【題目】在矩形中,,,是的一點(diǎn),且,是上一點(diǎn),射線交的延長(zhǎng)線于點(diǎn),交于點(diǎn),連結(jié),,交于點(diǎn).
(1)當(dāng)點(diǎn)為中點(diǎn)時(shí),則 , ;(直接寫出答案)
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,的值是否會(huì)變化,若不變,求出它的值;若變化,請(qǐng)說(shuō)明理由;
(3)若為等腰三角形時(shí),請(qǐng)求出所有滿足條件的的長(zhǎng)度.
【答案】(1)8,;(2)不變,;(3)或1或
【解析】
如圖1,過(guò)G作GH⊥AD于H,先證明AE=AM=2,得∠AEM=∠DEF=45°,則DF=DE=8,再求CG的長(zhǎng),根據(jù)勾股定理計(jì)算EG的長(zhǎng);
(2)根據(jù)ME⊥EG,證明△AME∽△HEG,△EHG∽△FDE,可得,可得∠EGM=∠EFG.可得∠MGF=90°,由三角函數(shù)定義可得結(jié)論;
(3)設(shè)AM=m,則BM=4-m,DF=4m,證明△MBG∽△GCF,表示CG=8-2m,BG=2+2m.分三種情況進(jìn)行討論,根據(jù)平行線分線段成比例定理和三角函數(shù)定義列等式可得結(jié)論.
(1)如圖1,過(guò)G作GH⊥AD于H,
∵點(diǎn)M為AB中點(diǎn),AB=4,
∴AM=2,
∵AE=2,
∴AE=AM=2,
∴DE=10-2=8,
∵四邊形ABCD是矩形,
∴∠A=∠CDA=90°,
∴∠AEM=∠DEF=45°,
∴DF=DE=8,
∵EG⊥ME,
∴∠MEG=90°,
∴∠HEG=∠EGH=45°,
∴GH=EH=4,
∴,
故答案為: 8,
(2)∵
∴,
∴,
∴,
∴∠EGM=∠EFG.
∴∠EGM=∠EFG.
∵∠EGF+∠EFG=90°,
∴∠EGF+∠EGM=90°,即∠MGF=90°,
∴.
(3)設(shè),則,,∴.
∵,∴,
∴,
∴,.
(ⅰ)當(dāng)時(shí),過(guò)點(diǎn)作于點(diǎn),
則,
∴.
∵,∴,即
∴
解得或(舍去).
(ⅱ)當(dāng)是,.
∵,∴,
∴.
過(guò)點(diǎn)作于點(diǎn),則,
∴,
∴.
(ⅲ)當(dāng)時(shí),.
∵,∴,
∴
∴
∴.
綜上所述:當(dāng)或1或時(shí),為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在抗疫期間,藥店銷售兩種類型的口罩,已知銷售只型口罩和只型口罩的潤(rùn)為元,售只型口罩和只型口罩的利潤(rùn)為元,
(1)每只型口罩和型口罩的利潤(rùn);
(2)該藥店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的口罩只,其中型口罩的進(jìn)貨量不超過(guò)型口罩的倍,設(shè)購(gòu)進(jìn)型罩只,這口罩的利潤(rùn)為元;
①求關(guān)于的函數(shù)關(guān)系式;
②藥店購(gòu)進(jìn)型口各多少才能使銷售總利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)E,F分別是AD,BC的中點(diǎn),G,H分別是BD,AC的中點(diǎn),AB,CD滿足( )條件時(shí),四邊形EGFH是菱形.
A.AB=CDB.AB//CDC.AB⊥CDD.AB=CD AB//CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)B(4,0),且與y軸交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn),連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當(dāng)△PDB的面積等于△CAD的面積時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)m>0,n>0時(shí),過(guò)點(diǎn)P作直線PE⊥y軸于點(diǎn)E交直線BC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥x軸于點(diǎn)G,連接EG,請(qǐng)直接寫出隨著點(diǎn)P的運(yùn)動(dòng),線段EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家趙爽利用弦圖證明了勾股定理,這是著名的趙爽弦圖(如圖1).它是由四個(gè)全等的直角三角形拼成了內(nèi)、外都是正方形的美麗圖案.在弦圖中(如圖2),已知點(diǎn)O為正方形ABCD的對(duì)角線BD的中點(diǎn),對(duì)角線BD分別交AH,CF于點(diǎn)P、Q.在正方形EFGH的EH、FG兩邊上分別取點(diǎn)M,N,且MN經(jīng)過(guò)點(diǎn)O,若MH=3ME,BD=2MN=4 .則△APD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推進(jìn)課改,王老師把班級(jí)里60名學(xué)生分成若干小組,每小組只能是5人或6人,則有幾種分組方案( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AE平分∠BAC,交BC于D,交⊙O于E,若AB、AC的長(zhǎng)是方程x2-ax+12=0的兩實(shí)根,AD=2,則AE的長(zhǎng)為( 。
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)(1)班全班50名同學(xué)組成五個(gè)不同的興趣愛(ài)好小組,每人都參加且只能參加一個(gè)小組,統(tǒng)計(jì)(不完全)人數(shù)如下表:
編號(hào) | 一 | 二 | 三 | 四 | 五 |
人數(shù) | 15 | 20 | 10 |
已知前面兩個(gè)小組的人數(shù)之比是.
解答下列問(wèn)題:
(1) .
(2)補(bǔ)全條形統(tǒng)計(jì)圖:
(3)若從第一組和第五組中任選兩名同學(xué),求這兩名同學(xué)是同一組的概率.(用樹狀圖或列表把所有可能都列出來(lái))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點(diǎn)E、F分別是邊BC、AC的中點(diǎn),P是AB上一點(diǎn),以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為( )
A. 3 B. 3 C. 4 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com