【題目】我市某工藝品廠生產(chǎn)一款工藝品、已知這款工藝品的生產(chǎn)成本為每件60元.經(jīng)市場調(diào)研發(fā)現(xiàn):該款工藝品每天的銷售量y(件)與售價x(元)之間存在著如下表所示的一次函數(shù)關(guān)系.

售價x(元)

70

90

銷售量y(件)

3000

1000

(利潤=(售價﹣成本價)×銷售量)

(1)求銷售量y(件)與售價x(元)之間的函數(shù)關(guān)系式;

(2)你認為如何定價才能使工藝品廠每天獲得的利潤為40000元?

【答案】當(dāng)定價為80元時才能使工藝品廠每天獲得的利潤為40000元.

【解析】試題分析:(1)設(shè)一次函數(shù)的一般式y=kx+b,將(70,3000)(90,1000)代入即可求得;

2)按照等量關(guān)系利潤=(定價-成本)×銷售量列出利潤關(guān)于定價的函數(shù)方程,求解即可.

試題解析:(1)設(shè)一次函數(shù)關(guān)系式為y=kx+b,根據(jù)題意得

解之得k=﹣100b=10000

所以所求一次函數(shù)關(guān)系式為y=﹣100x+10000x0

2)由題意得(x﹣60)(﹣100x+10000=40000

x2﹣160x+6400=0,所以(x﹣802=0

所以x1=x2=80

答:當(dāng)定價為80元時才能使工藝品廠每天獲得的利潤為40000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時,平均每株盈利4元;若每盆增加1株,平均每株盈利減少0.5元,要使每盆的盈利達到15元,每盆應(yīng)多植多少株?設(shè)每盆多植x株,則可以列出的方程是( )
A.(3+x)(4﹣0.5x)=15
B.(x+3)(4+0.5x)=15
C.(x+4)(3﹣0.5x)=15
D.(x+1)(4﹣0.5x)=15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,長方形的兩邊長分別為m+1,m+7;如圖②,長方形的兩邊
長分別為m+2,m+4.(其中m為正整數(shù))

(1)圖①中長方形的面積 =
圖②中長方形的面積 =
比較: (填“<”、“=”或“>”)
(2)現(xiàn)有一正方形,其周長與圖①中的長方形周長相等,則
①求正方形的邊長(用含m的代數(shù)式表示);
②試探究:該正方形面積 與圖①中長方形面積 的差(即 - )是一個常數(shù),求出這個常數(shù).
(3)在(1)的條件下,若某個圖形的面積介于 、 之間(不包括 )并且面積為整數(shù),這樣的整數(shù)值有且只有10個,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=50°,將其折疊,使點A落在邊CB上A′處,折痕為CD,則∠A′DB=(

A.40°
B.30°
C.20°
D.10°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:四邊形ABCD為平行四邊形,延長ADE,使DE=AD,連接EB,ECDB.添加一個條件,不能使四邊形DBCE為矩形的是( )

A. AB=BE B. BECD C. ADB=900 D. CEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分成三個三角形,則SABO:SBCO:SCAO等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,AH⊥BC于H,AH=CH=5,則四邊形ABCD的面積是(  )

A.15
B.20
C.25
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(﹣7y+x)()=49y2﹣x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中能用完全平方公式進行因式分解的是(
A.x2+x+1
B.x2﹣6x+9
C.x2﹣1
D.x2+2x﹣1

查看答案和解析>>

同步練習(xí)冊答案