【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=BC.延長DA與⊙O的另一個交點為E,連接AC,CE.
(1)求證:∠B=∠D;
(2)若AB=13,BC﹣AC=7,求CE的長.
【答案】
(1)證明:∵AB為⊙O的直徑,
∴∠ACB=90°,
∴AC⊥BC,
又∵DC=CB,
∴AD=AB,
∴∠B=∠D
(2)解:設BC=x,則AC=x﹣7,
在Rt△ABC中,AC2+BC2=AB2,
即(x﹣7)2+x2=132,
解得:x1=12,x2=﹣5(舍去),
∵∠B=∠E,∠B=∠D,
∴∠D=∠E,
∴CD=CE,
∵CD=CB,
∴CE=CB=12
【解析】(1)由AB為⊙O的直徑,易證得AC⊥BD,又由DC=CB,根據(jù)線段垂直平分線的性質(zhì),可證得AD=AB,即可得:∠B=∠D;(2)首先設BC=x,則AC=x﹣7,由在Rt△ABC中,AC2+BC2=AB2 , 可得方程:(x﹣7)2+x2=132 , 解此方程即可求得CB的長,繼而求得CE的長.
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,正確的有( )
①Rt△ABC中,已知兩邊長分別為3和4,則第三邊長為5;
②有一個內(nèi)角等于其他兩個內(nèi)角和的三角形是直角三角形;
③三角形的三邊分別為a,b,C,若a2+c2=b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,則△ABC是直角三角形.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖),圖由弦圖變化得到,它是由作個全等的直角三角形拼接而成,記圖中正方形,正方形,正方形的面積分別為、、,若,則的值是( )
A. 5 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,有張寫有實數(shù)的卡片,它們的背面都相同,現(xiàn)將它們背面朝上洗勻后如圖②擺放,從中任意翻開兩張都是無理數(shù)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學研究課上,老師出示如圖1所示的長方形紙條,,,然后在紙條上任意畫一條截線段,將紙片沿折疊,與交于點,得到,如圖2所示:
(1)若,求的大;
(2)改變折痕位置,判斷的形狀,并說明理由;
(3)愛動腦筋的小明在研究的面積時,發(fā)現(xiàn)邊上的高始終是個不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出的面積最小值為,求的大小;
(4)小明繼續(xù)動手操作,發(fā)現(xiàn)了面積的最大值,請你求出這個最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com