【題目】如圖,在四邊形ABCD中,∠ABC=90°,∠BAD=60°,AC=AD,AC平分∠BAD,M,N分別為AC,CD的中點(diǎn),BM的延長線交AD于點(diǎn)E,連接MN,BN.對于下列四個結(jié)論:①MN∥AD;② BM=MN;③△BAE≌△ACB;④AD=BN,其中正確結(jié)論的序號是( )
A. ①②③④ B. ①②③ C. ①②④ D. ①②
【答案】C
【解析】分析: 根據(jù)三角形中位線定理,直角三角形斜邊上的中線一一判斷即可.
詳解:①在△CAD中,∵M(jìn)、N分別是AC、CD的中點(diǎn),∴MN∥AD,正確.
②在△CAD中,∵M(jìn)、N分別是AC、CD的中點(diǎn),∴MN∥AD,MN=AD,
在RT△ABC中,∵M(jìn)是AC中點(diǎn),∴BM=AC,∵AC=AD,∴BM=MN.正確.
③錯誤.
④設(shè)AM=x,∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,∵∠ABC=90°,M為AC的中點(diǎn),∴BM=AM=x,∴∠CMB=2∠BAC=60°,∵AC=AD,∴AD=2x,∵M(jìn),N分別為AC,CD的中點(diǎn),∴MN=AD=x,∠CMN=∠DAC=30°,∴∠BMN=90°,∴BN=,∴BN=AD.故正確.
故答案為:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】唐山質(zhì)量監(jiān)督局從某食品廠生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標(biāo)準(zhǔn),把超過或不足的部分分別用正、負(fù)數(shù)來表示,記錄如下表:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克) | ﹣6 | ﹣2 | 0 | 1 | 3 | 4 |
袋數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)若每袋食品的標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測的20袋食品的總質(zhì)量是多少克?
(2)若該種食品的合格標(biāo)準(zhǔn)為450±5克,求該種食品抽樣檢測的合格率?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是小明在健身器材上進(jìn)行仰臥起坐鍛煉時的情景,圖②是小明鍛煉時上半身由ON位置運(yùn)動到與地面垂直的OM位置時的示意圖.已知AC=0.66米,BD=0.26米,α=20°.(參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)
(1)求AB的長(精確到0.01米);
(2)若測得ON=0.8米,試計(jì)算小明頭頂由N點(diǎn)運(yùn)動到M點(diǎn)的路徑的長度.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對角線AC上,且AE=CF.求證:
(1)DE=BF;
(2)四邊形DEBF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用24000元購入一批空調(diào),然后以每臺3000元的價格銷售,因天氣炎熱,空調(diào)很快售完;商場又以52000元的價格再次購入該種型號的空調(diào),數(shù)量是第一次購入的2倍,但購入的單價上調(diào)了200元,售價每臺也上調(diào)了200元.
(1)商場第一次購入的空調(diào)每臺進(jìn)價是多少元?
(2)商場既要盡快售完第二次購入的空調(diào),又要在這兩次空調(diào)銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調(diào)按每臺九五折出售,最多可將多少臺空調(diào)打折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將一根繩子平放在桌上,用剪刀任意剪n刀(如圖①),繩子變成n+1段;若將繩子對折1次后從中間剪一刀(如圖②),繩子的刀口 個,繩子變成 段;若將繩子對折2次后從中間剪一刀,繩子的刀口有 個,繩子變成 段;若將繩子對折n次后從中間剪一刀,繩子的刀口 個,繩子變成 段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在數(shù)軸上表示的數(shù)分別為-4和+16,A,B兩點(diǎn)間的距離可記為AB
(1) 點(diǎn)C在數(shù)軸上A,B兩點(diǎn)之間,且AC=BC,則C點(diǎn)對應(yīng)的數(shù)是_________
(2) 點(diǎn)C在數(shù)軸上A,B兩點(diǎn)之間,且BC=4AC,則C點(diǎn)對應(yīng)的數(shù)是_________
(3) 點(diǎn)C在數(shù)軸上,且AC+BC=30,求點(diǎn)C對應(yīng)的數(shù)?
(4) 若點(diǎn)A在數(shù)軸上表示的數(shù)是a,B表示的數(shù)是b,則AB=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對角線BD上的動點(diǎn),過點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動時(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
如果一個三角形的三邊長分別為a,b,c,記p=,那么這個三角形的面積S=.這個公式叫“海倫公式”,它是利用三角形三條邊的邊長直接求三角形面積的公式。中國的秦九韶也得出了類似的公式,稱三斜求積術(shù),故這個公式又被稱為“海倫秦---九韶公式”完成下列問題:
如圖,在△ABC中,a=7,b=5,c=6.
(1)求△ABC的面積;
(2)設(shè)AB邊上的高為h1,AC邊上的高為h2,求h1 +h2的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com