【題目】如圖,在平面直角坐標(biāo)系中,直線軸、軸分別相交于、兩點(diǎn),點(diǎn)的中點(diǎn),點(diǎn)、分別為線段上的動(dòng)點(diǎn),將沿折疊,使點(diǎn)的對(duì)稱點(diǎn)恰好落在線段上(不與端點(diǎn)重合).連接分別交、于點(diǎn),連接.

1)求的值;

2)試判斷的位置關(guān)系,并加以證明;

3)若,求點(diǎn)的坐標(biāo).

【答案】1;(2,證明見(jiàn)解析;(3)點(diǎn)的坐標(biāo)為.

【解析】

1)結(jié)合A,B的坐標(biāo),在在中,即可求出的值;

2的位置關(guān)系為,利用折疊的性質(zhì)以及斜邊上的中線定理可證明,再利用相似三角形的性質(zhì)進(jìn)一步證明,結(jié)合三角形內(nèi)角和定理即可證明結(jié)論;

3)設(shè),則,,用含t的式子表示出DN,再由,得出OD的值,最后利用勾股定理求解即可.

解:(1)由題意得:,

中,

(2),理由如下:

由折疊的性質(zhì)得:

斜邊上的中線,

,

,

又∵

,

,即,

又∵,

,

,

,

(3)∵

∴在中,,

設(shè),則,,

當(dāng)時(shí),

又∵,

,

,

得:,即,

中,由勾股定理得:,

,解得:,

或0(不合題意,舍去),

∴點(diǎn)

綜上所述,點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于點(diǎn).點(diǎn)在函數(shù)圖像上,軸,且,直線是拋物線的對(duì)稱軸,是拋物線的頂點(diǎn).

(1)求、的值;

(2)如圖,連接,線段上的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好在線段上,求點(diǎn)的坐標(biāo);

(3)如圖,動(dòng)點(diǎn)在線段上,過(guò)點(diǎn)軸的垂線分別與交于點(diǎn),與拋物線交于點(diǎn).試問(wèn):拋物線上是否存在點(diǎn),使得的面積相等,且線段的長(zhǎng)度最小?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)B0,4),等邊三角形OAB的頂點(diǎn)A在反比例函數(shù)yx0)的圖象上.

1)求反比例函數(shù)的表達(dá)式;

2)把OAB沿y軸向上平移a個(gè)單位長(zhǎng)度,對(duì)應(yīng)得到O'A'B'.當(dāng)這個(gè)函數(shù)的圖象經(jīng)過(guò)O'A'B'一邊的中點(diǎn)時(shí),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從下列4個(gè)命題中任取一個(gè):①三點(diǎn)確定一個(gè)圓:②平分弦的直徑平分弦所對(duì)的弧:③弦相等,所對(duì)的圓心角相等;④在半徑為4的圓中,30°的圓心角所對(duì)的弧長(zhǎng)為,是真命題的概率是( ).

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果兩條線段將一個(gè)三角形分成3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.如圖1,把一張頂角為36的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,我們把這兩條線段叫做等腰三角形的三分線.

(1)如圖2,請(qǐng)用兩種不同的方法畫(huà)出頂角為45的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù):(若兩種方法分得的三角形成3對(duì)全等三角形,則視為同一種)

(2)如圖3ABC 中,AC=2,BC=3,C=2B,請(qǐng)畫(huà)出ABC 的三分線,并求出三分線的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線

1)求證:拋物線與軸有兩個(gè)交點(diǎn).

2)設(shè)拋物線與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為,(其中).若是關(guān)于的函數(shù)、且,求這個(gè)函數(shù)的表達(dá)式;

3)若,將拋物線向上平移一個(gè)單位后與軸交于點(diǎn)、.平移后如圖所示,過(guò)作直線,分別交的正半軸于點(diǎn)和拋物線于點(diǎn),且是線段上一動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形和四邊形都是正方形,且

1)如圖1,連接、.求證:;

2)如圖2,如果正方形繞點(diǎn)旋轉(zhuǎn)到某一位置恰好使得,

①求的度數(shù);

②若正方形的邊長(zhǎng)是,請(qǐng)求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為2,連接,點(diǎn)是線段延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),,點(diǎn)與線段延長(zhǎng)線的交點(diǎn),當(dāng)平分時(shí),______(填“>”“<”“=”):當(dāng)不平分時(shí),__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)一元二次方程的兩個(gè)實(shí)數(shù)根的比值與另一個(gè)一元二次方程的兩個(gè)實(shí)數(shù)根的比值相等,我們稱這兩個(gè)方程為相似方程,例如,的實(shí)數(shù)根是36的實(shí)數(shù)根是12,,則一元二次方程為相似方程.下列各組方程不是相似方程的是( )

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案