【題目】如圖,正方形ABCD的邊長為1,分別以頂點A、B、C、D為圓心,1為半徑畫弧,四條弧交于點E、F、G、H,則圖中陰影部分的外圍周長為_____

【答案】π

【解析】

連接AF、DF,根據(jù)圓的性質(zhì):同圓或等圓的半徑相等判斷出△ADF是等邊三角形,再根據(jù)正方形和等邊三角形的性質(zhì)求出∠BAF=30°,同理可得弧DE的圓心角是30°,然后求出弧EF的圓心角是30°,再根據(jù)弧長公式求出弧EF的長,然后根據(jù)對稱性,圖中陰影部分的外圍四條弧都相等列式計算即可得解.

如圖,連接AF、DF,

由圓的定義,AD=AF=DF,

所以,△ADF是等邊三角形,

∵∠BAD=90°∠FAD=60°,

∴∠BAF=90°60°=30°,

同理,DE的圓心角是30°,

EF的圓心角是90°30°×2=30°,

EF的長= = ,

由對稱性知,圖中陰影部分的外圍四條弧都相等,

所以,圖中陰影部分的外圍周長= ×4= π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一邊在BC上,其余兩個頂點分別在AB、AC上,設(shè)EG=x mm,EF=y mm

1)寫出xy的關(guān)系式;

2)用S表示矩形EGHF的面積,某同學(xué)說當(dāng)矩形EGHF為正方形時S最大,這個說法正確嗎?說明理由,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:

①該產(chǎn)品90天內(nèi)日銷售量(m件)與時間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

時間(第x天)

1

3

6

10

日銷售量(m件)

198

194

188

180

②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關(guān)系如下表:

時間(第x天)

1≤x<50

50≤x≤90

銷售價格(元/件)

x+60

100

(1)求m關(guān)于x的一次函數(shù)表達(dá)式;

(2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本)】

(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AD平分∠BAC,交BC于點D,點OAB上,⊙O經(jīng)過A、D兩點,交AC于點E,交AB于點F

1)求證:BC是⊙O的切線;

2)若⊙O的半徑是2cm,E是弧AD的中點,求陰影部分的面積(結(jié)果保留π和根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yaxaya≠0)在同一直角坐標(biāo)系中的圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生的課余生活,拓展學(xué)生的視野某學(xué)校開設(shè)了特色選修課程.本學(xué)期該校共開設(shè)A、B、C三類課程,如下表所示

(1)若小明從A類課程中隨機選擇一門課程,則他恰好選中“合唱的概率是

(2)若小明分別從B類課程和C類課程中各隨機選擇一門課程,求他恰好選中漢字的故事乒乓球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)概念)

若等邊三角形的三個頂點D、E、F分別在ABC的三條邊上,我們稱等邊三角形DEFABC的內(nèi)接正三角形

(概念辨析)

(1)下列圖中DEF均為等邊三角形,則滿足DEFABC的內(nèi)接正三角形的是

A.    B.

C.

(操作驗證)

(2)如圖.在ABC,∠B=60°,D為邊AB上一定點BCBD),DEDB,EM平分DEC交邊AC于點M,DME的外接圓與邊BC的另一個交點為N

求證DMNABC的內(nèi)接正三角形

(知識應(yīng)用)

(3)如圖.在ABC,∠B=60°,∠A=45°,BC=2,D是邊AB上的動點,若邊BC上存在一點E,使得以DE為邊的等邊三角形DEFABC的內(nèi)接正三角形.設(shè)DEF的外接圓O與邊BC的另一個交點為KDK的最大值為 ,最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+mx+nx軸于點A﹣2,0)和點B,交y軸于點C02).

1)求拋物線的函數(shù)表達(dá)式;

2)若點M在拋物線上,且SAOM=2SBOC,求點M的坐標(biāo);

3)如圖2,設(shè)點N是線段AC上的一動點,作DNx軸,交拋物線于點D,求線段DN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程kx2+(2k﹣1)x+k﹣1=0(1)只有整數(shù)根,且關(guān)于y的一元二次方程(k﹣1)y2﹣3y+m=0(2)有兩個實數(shù)根y1y2

(1)當(dāng)k為整數(shù)時,確定k的值;

(2)在(1)的條件下,若m>﹣2,用關(guān)于m的代數(shù)式表示y12+y22

查看答案和解析>>

同步練習(xí)冊答案