【題目】如圖,面積為6cm2的△ABC紙片沿BC方向平移至△DEF的位置,平移的距離是BC長(zhǎng)的2倍,則△ABC紙片掃過(guò)的面積為( )
A.18cm2
B.21cm2
C.27cm2
D.30cm2
【答案】D
【解析】∵平移的距離是邊BC長(zhǎng)的兩倍,
∴BC=CE=EF,
∴四邊形ACED的面積是三個(gè)△ABC的面積;
∴四邊形ABED的面積=6×(1+3)=24cm2,
∴△ABC紙片掃過(guò)的面積=6×(2+3)=30cm2,
所以答案是:D.
【考點(diǎn)精析】利用平移的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知①經(jīng)過(guò)平移之后的圖形與原來(lái)的圖形的對(duì)應(yīng)線段平行(或在同一直線上)且相等,對(duì)應(yīng)角相等,圖形的形狀與大小都沒(méi)有發(fā)生變化;②經(jīng)過(guò)平移后,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線上)且相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋子中裝有紅、黑、白三種球共個(gè),他們除了顏色外其余完全一樣. 已知黑球是白球的倍少個(gè),將球充分?jǐn)噭蚝螅S機(jī)摸出一球是紅球的概率是
(1)這三種球各有多少個(gè)?
(2)隨機(jī)摸出一球是白球的概率是多少?
(3)若從袋子中拿出個(gè)球(沒(méi)有紅球)后,隨機(jī)摸一次摸到紅球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是屋架設(shè)計(jì)圖的一部分,點(diǎn)D是斜梁AB的中點(diǎn),立柱BC、DE垂直于橫梁AC,AB=4m,∠A=30°,則DE等于( )
A. 1m B. 2m C. 3m D. 4m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,“中國(guó)海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國(guó)海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)B的正西方向上,島礁C上的中國(guó)海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)C的南偏東30°方向上,已知點(diǎn)C在點(diǎn)B的北偏西60°方向上,且B,C兩地相距120海里.
(1)求出此時(shí)點(diǎn)A到島礁C的距離;
(2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛?cè)ィ?dāng)?shù)竭_(dá)點(diǎn)A′時(shí),測(cè)得點(diǎn)B在A′的南偏東75°的方向上,求此時(shí)“中國(guó)海監(jiān)50”的航行距離.(注:結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】郴州市正在創(chuàng)建“全國(guó)文明城市”,某校擬舉辦“創(chuàng)文知識(shí)”搶答賽,欲購(gòu)買A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購(gòu)買A種20件,B種15件,共需380元;如果購(gòu)買A種15件,B種10件,共需280元.
(1)A、B兩種獎(jiǎng)品每件各多少元?
(2)現(xiàn)要購(gòu)買A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過(guò)900元,那么A種獎(jiǎng)品最多購(gòu)買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.利用網(wǎng)格點(diǎn)和三角板畫圖或計(jì)算:
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F為DC上一點(diǎn),且FC=AB,E為AD上一點(diǎn),EC交AF于點(diǎn)G.
(1)求證:四邊形ABCF是矩形;
(2)若ED=EC,求證:EA=EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC、AC分別交于D、E兩點(diǎn),過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若AE=4,cosA= ,求DF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com