【題目】如圖,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線,CD=5cm,求AB的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,BC=12,E為邊AC的中點,
(1)如圖1,過點E作EH⊥BC,垂足為點H,求線段CH的長;
(2)作線段BE的垂直平分線分別交邊BC、BE、AB于點D、O、F.
①如圖2,當(dāng)∠BAC=90°時,求BD的長;
②如圖3,設(shè)tan∠ACB=x,BD=y,求y與x之間的函數(shù)表達(dá)式和tan∠ACB的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當(dāng)△DCE旋轉(zhuǎn)至點A,D,E在同一直線上,連接BE,易證△BCE≌△ACD.則
①∠BEC=______°;②線段AD、BE之間的數(shù)量關(guān)系是______.
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.
(3)探究發(fā)現(xiàn):
如圖3,P為等邊△ABC內(nèi)一點,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表:下列結(jié)論:①ac<0;②當(dāng)x>1時,y的值隨x的增大而減。③3是方程ax2+(b﹣1)x+c=0的一個根;④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+x>0.其中正確的序號為_____
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)探究:線段OE與OF的數(shù)量關(guān)系并加以證明;
(2)當(dāng)點O在邊AC上運動時,四邊形BCFE會是菱形嗎?若是,請證明;若不是,則說明理由;
(3)當(dāng)點O運動到何處,且△ABC滿足什么條件時,四邊形AECF是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個布口袋里裝有紅色、黑色、藍(lán)色和白色的小球各1個,如果閉上眼睛隨機地從布袋中取出一個球,記下顏色,放回布袋攪勻,再閉上眼睛隨機的再從布袋中取出一個球.用樹狀圖或列表法解決求:
(1)連續(xù)兩次恰好都取出白色球的概率;
(2)連續(xù)兩次恰好取出一紅、一黑的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com