【題目】如圖,已知AB是O的直徑,點C在O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是O的切線;
(2)求證: ;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MN·MC的值.
【答案】(1)(2)見解析(3)8
【解析】試題分析:(1)已知C在圓上,故只需證明OC與PC垂直即可;根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP,故PC是⊙O的切線;
(2)AB是直徑;故只需證明BC與半徑相等即可;
(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進而可得△MBN∽△MCB,故BM2=MNMC,代入數(shù)據(jù)可得MNMC=BM2=8.
試題解析:(1)∵OA=OC,∴∠A=∠ACO,
又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB,
又∵AB是⊙O的直徑,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,
即OC⊥CP,
∵OC是⊙O的半徑,∴PC是⊙O的切線;
(2)∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC,
∴;
(3)連接MA,MB,
∵點M是弧AB的中點,∴ 弧AM=弧BM,∴∠ACM=∠BCM,
∵∠ACM=∠ABM,∴∠BCM=∠ABM,
∵∠BMN=∠BMC,∴△MBN∽△MCB,∴ ,∴,
又∵AB是⊙O的直徑,弧AM=弧BM,
∴∠AMB=90°,AM=BM,
∵AB=4,∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)求證:AB∥CD;
(2)如圖2,∠AEF與∠EFC的角平分線相交于點P,直線EP與直線CD交于點G,過點G做EG的垂線,交直線MN于點H.求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點,且∠PHK=∠HPK,作∠EPK的平分線交直線MN于點Q.問∠HPQ的大小是否發(fā)生變化?若不變,請求出∠HPQ的度數(shù);若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司共有50名員工,為慶!拔逡弧眹H勞動節(jié),公司將組織員工參加“海南雙飛五日游”活動,旅行社的收費標準是每人2500元,公司提供下列兩種方案供員工選擇參與:
方案一:要參加旅游活動者,對于2500元的旅游費,員工個人支付500元,其余2000元由公司支付;
方案二:不參加旅游者,不必交費,每人還能領取公司發(fā)放的500元節(jié)日費.
(1)如果公司有30人參加旅游,其余20人不參加,問公司總共需支付多少元?
(2)如果公司共支付5.5萬元,問有多少名員工參加旅游活動?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:用3輛A型車和2輛B型車載滿貨物一次可運貨共19噸;用2輛A型車和3輛B型車載滿貨物一次可運貨共21噸.
(1)1輛A型車和1輛B型車都載滿貨物一次分別可以運貨多少噸?
(2)某物流公司現(xiàn)有49噸貨物,計劃同時租用A型車輛,B型車輛,一次運完,且恰好每輛車都載滿貨物.
①求、的值;
②若A型車每輛需租金130元/次,B型車每輛需租金200元/次.請求出租車費用最少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是高線,AE,BF是角平分線,它們相交于點O,∠BAC=50°,∠C=70°,求:
(1)∠DAC的度數(shù);
(2)∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個藝術窗的一部分,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大正方形的邊長為5cm,則正方形A、B、C、D的面積和是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】看過西游記的同學都知道:孫悟空會分身術,他搖身一變就變成2個悟空;這兩個悟空搖身一變,共變成4個悟空;這4個悟空再變,又變成8個悟空…假設悟空一連變了30次,那么會有_____個孫悟空..
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com