【題目】如圖,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q兩點分別從A,B同時出發(fā),點P沿折線AB﹣BC運動,在AB上的速度是2cm/s,在BC上的速度是2cm/s;點Q在BD上以2cm/s的速度向終點D運動,過點P作PN⊥AD,垂足為點N.連接PQ,以PQ,PN為鄰邊作PQMN.設(shè)運動的時間為x(s),PQMN與矩形ABCD重疊部分的圖形面積為y(cm2

(1)當PQ⊥AB時,x等于多少;

(2)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;

(3)直線AM將矩形ABCD的面積分成1:3兩部分時,直接寫出x的值.

【答案】(1)s;(2)y=;(3)當x=s時,直線AM將矩形ABCD的面積分成1:3兩部分.

【解析】

(1)PQAB時,BQ=2PB,由此構(gòu)建方程即可解決問題;

(2)分三種情形分別求解即可解決問題;

(3)分兩種情形分別求解即可解決問題.

解:(1)PQAB時,BQ=2PB,

2x=2(2﹣2x),

x=s.

(2)①如圖1中,當0x時,重疊部分是四邊形PQMN.

y=2x×x=2x2

②如圖②中,當x1時,重疊部分是四邊形PQEN.

y=(2﹣x+2x)×x=x2+x.

③如圖3中,當1x2時,重疊部分是四邊形PNEQ.

y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4

綜上所述,y=

(3)①如圖4中,當直線AM經(jīng)過BC中點E時,滿足條件.

則有:tanEAB=tanQPB,

=,

解得x=

②如圖5中,當直線AM經(jīng)過CD的中點E時,滿足條件.

此時tanDEA=tanQPB,

=,

解得x=

綜上所述,當x=時,直線AM將矩形ABCD的面積分成1:3兩部分.

故答案為:(1)s;(2)y=;(3)x=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】請你畫出一個以BC為底邊的等腰ΔABC,使底邊上的高AD=BC

1)求tanBsinB的值;

2)在你所畫的等腰ΔABC中設(shè)底邊BC=5米,求腰上的高BE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 軸、軸分別交于點B、C經(jīng)過B、C兩點的拋物線軸的另一個交點為A

(1)求該拋物線的解析式;

2若點P在直線下方的拋物線上,過點PPD軸交于點DPE軸交于點E,

PD+PE的最大值

(3)設(shè)F為直線上的點,以A、B、P、F為頂點的四邊形能否構(gòu)成平行四邊形?若能,求出點F的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,以為直徑的經(jīng)過點,連接交于點

(1)證明:;

(2)若,證明:相切;

(3)在(2)條件下,連接于點,連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是學習分式方程應用時,老師板書的問題和兩名同學所列的方程.

根據(jù)以上信息,解答下列問題.

(1)冰冰同學所列方程中的x表示什么,慶慶同學所列方程中的y表示什么;

(2)兩個方程中任選一個,并寫出它的等量關(guān)系;

(3)解(2)中你所選擇的方程,并回答老師提出的問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以BC為直徑的⊙OAB于點D,DEAC于點E,且∠AADE

(1)求證:DE是⊙O的切線;

(2)若AD=16,DE=10,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】海南建省30年來,各項事業(yè)取得令人矚目的成就,以2016年為例,全省社會固定資產(chǎn)總投資約3730億元,其中包括中央項目、省屬項目、地(市)屬項目、縣(市)屬項目和其他項目.圖1、圖2分別是這五個項目的投資額不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請完成下列問題:

(1)在圖1中,先計算地(市)屬項目投資額為多少億元,然后將條形統(tǒng)計圖補充完整;

(2)在圖2中,縣(市)屬項目部分所占百分比為m%、對應的圓心角為β,求m的值,β等于多少度(m、β均取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是  

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB⊙O的直徑,C、D⊙O上的點,且OC∥BD, AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:①AD⊥BD; ②∠AOC=∠AEC; ③CB平分∠ABD;④AF=DF; ⑤BD=2OF; ⑥△CEF ≌△BED,其中一定成立的是(

A. ① ③ ⑤ ⑥ B. ① ③ ④ ⑤

C. ② ④ ⑤ ⑥ D. ② ③ ④ ⑥

查看答案和解析>>

同步練習冊答案