【題目】已知:如圖,在等邊中,,且交外角平分線于點.
(1)當(dāng)點為中點時,試說明與的數(shù)量關(guān)系;
(2)當(dāng)點不是中點時,試說明與的數(shù)量關(guān)系.
【答案】(1),見解析.(2),見解析.
【解析】
(1)AD=DE.由等邊三角形的性質(zhì)和平行線的性質(zhì)得到∠BDF=∠BFD=60°,于是得到△BDF是等邊三角形,再證明△AFD≌△DCE即可得到結(jié)論;
(2)AD=DE.由等邊三角形的性質(zhì)和平行線的性質(zhì)得到∠BDF=∠BFD=60°,于是得到△BDF是等邊三角形,再證明△AFD≌△DCE即可得到結(jié)論;
(1)結(jié)論:AD=DE,理由如下:
如圖: 過點D作DF∥AC,交AB于點F,
∵△ABC是等邊三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°.
又∵DF∥AC,
∴∠BDF=∠ACB=60°,
∴△BDF是等邊三角形,
∴DF=BD,∠BFD=60°,
∵BD=CD,
∴DF=CD
∴∠AFD=120°.
∵EC是外角的平分線,∴∠ACE=60°,
∴∠DCE=∠ACB+∠ACE=120°=∠AFD,
∵∠ADB=∠ADC=90°,
∴∠ADF=∠EDC=30°,
在△AFD與△EDC中,
,
∴△AFD≌△DCE(ASA),
∴AD=DE;
(2)結(jié)論:AD=DE;理由如下:
如圖2,過點D作DF∥AC,交AB于點F,
∵△ABC是等邊三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°,
又∵DF∥AC,
∴∠BDF=∠ACB=60°,
∴△BDF是等邊三角形,∴BF=BD,∠BFD=60°,
∴AF=CD,∠AFD=120°,
∵EC是外角的平分線,∴∠ACE=60°,
∴∠DCE=∠ACB+∠ACE=120°=∠AFD,
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠FAD=60°+∠FAD,
∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
∴∠FAD=∠EDC,
在△AFD和△DCE中,
,
∴△AFD≌△DCE(ASA),
∴AD=DE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校團委為積極參與“陶行知杯.全國書法大賽”現(xiàn)場決賽,向?qū)W校學(xué)生征集書畫作品,今年3月份舉行了“書畫比賽”初賽,初賽成績評定為A,B,C,D,E五個等級.該校七年級書法班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題.
(1)該校七年級書法班共有 名學(xué)生;扇形統(tǒng)計圖中C等級所對應(yīng)扇形的圓心角等于 度,并補全條形統(tǒng)計圖;
(2)A等級的4名學(xué)生中有2名男生,2名女生,現(xiàn)從中任意選取2名學(xué)生參加“陶行知杯.全國書法大賽”現(xiàn)場決賽,請你用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動點,PE⊥AB 于 E,PF⊥AC于 F,M 為 EF 中點,則 AM 的最小值為( )
A.1B.1.3C.1.2D.1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,依次連接邊長為1的小正方形各邊的中點,得到第二個小正方形,再依次連接第二個小正方形各邊的中點得到第三個小正方形,按這樣的規(guī)律第2019個小正方形的面積為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.觀察下面的點陣圖和相應(yīng)的等式,探究其中的規(guī)律:
(1)下圖反映了任何一個三角形數(shù)是如何得到的,認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式;
(2)通過猜想,寫出(1)中與第八個點陣相對應(yīng)的等式 ;
(3)從下圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.結(jié)合(1)觀察下列點陣圖,并在⑤看面的橫線上寫出相應(yīng)的等式.
(4)通過猜想,寫出(3)中與第n個點陣相對應(yīng)的等式 ;
(5)判斷256是不是正方形數(shù),如果不是,說明理由;如果是,256可以看作哪兩個相鄰的“三角形數(shù)”之和?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=2,點E在AD上,且ED=2AE.
(1)求證:△ABC∽△EAB.
(2)AC與BE交于點H,求HC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圓上有五個點,這五個點將圓分成五等份(每一份稱為一段弧長),把這五個點按順時針方向依次編號為1,2,3,4,5,若從某一點開始,沿圓周順時針方向行走,點的編號是數(shù)字幾,就走幾段弧長,則稱這種走法為一次“移位”.如:小明在編號為3的點,那么他應(yīng)走3段弧長,即從3→ 4→5→1為第一次“移位”,這時他到達(dá)編號為1的點,然后從1→2為第二次“移位”.若小明從編號為4的點開始,第2020次“移位”后,他到達(dá)編號為______的點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小劉同學(xué)在一次課外活動中,用硬紙片做了兩個直角三角形,在中,,,;在中,,,.圖①是小劉同學(xué)所做的一個數(shù)學(xué)探究:他將的直角邊與的斜邊重合在一起,并將沿方向移動.在移動過程中,、兩點始終在邊上(移動開始時點與點重合).
(1)在沿方向移動的過程中,小劉發(fā)現(xiàn):、兩點間的距離逐漸 ;連接后,的度數(shù)逐漸 .(填“不變”、“變大”或“變小”);
(2)小劉同學(xué)經(jīng)過進一步地研究,編制了如下問題:
問題①:如圖②,當(dāng)、的連線與平行時,求平移距離的長;
問題②:如圖③,在的移動過程中,的值是否為定值?如果是,請求出此定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題呈現(xiàn):如圖1,點E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD.(S表示面積)
實驗探究:某數(shù)學(xué)實驗小組發(fā)現(xiàn):若圖1中AH≠BF,點G在CD上移動時,上述結(jié)論會發(fā)生變化,分別過點E、G作BC邊的平行線,再分別過點F、H作AB邊的平行線,四條平行線分別相交于點A1、B1、C1、D1,得到矩形A1B1C1D1.
如圖2,當(dāng)AH>BF時,若將點G向點C靠近(DG>AE),經(jīng)過探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+.
如圖3,當(dāng)AH>BF時,若將點G向點D靠近(DG<AE),請?zhí)剿?/span>S四邊形EFGH、S矩形ABCD與之間的數(shù)量關(guān)系,并說明理由.
遷移應(yīng)用:
請直接應(yīng)用“實驗探究”中發(fā)現(xiàn)的結(jié)論解答下列問題:
如圖4,點E、F、G、H分別是面積為25的正方形ABCD各邊上的點,已知AH>BF,AE>DG,S四邊形EFGH=11,HF=,求EG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com