【題目】在平面直角坐標(biāo)系xOy中,對于點P與圖形W,若點Q為圖形W上任意一點,點Q關(guān)于第一、三象限角平分線的對稱點為Q,且線段PQ,的中點為Mm,0,則稱點P是圖形W關(guān)于點Mm,0)的關(guān)聯(lián)點”.

1)如圖1,若點P是點Q(0,)關(guān)于原點的關(guān)聯(lián)點,則點P的坐標(biāo)為 ;

2)如圖2,在ABC中,A2,2),B-2,0),C0,-2),

①將線段AO向右平移dd>0)個單位長度,若平移后的線段上存在兩個ABC關(guān)于點(2,0)的關(guān)聯(lián)點,則d的取值范圍是 .

②已知點Sn+2,0)和點Tn+4,0,若線段ST上存在ABC關(guān)于點Nn,0)的關(guān)聯(lián)點,求n的取值范圍.

【答案】10);(2)①;②.

【解析】

1)設(shè)P點坐標(biāo)為(ab),根據(jù)關(guān)聯(lián)點的定義、中點的坐標(biāo)公式和關(guān)于第一三象限角平分線對稱的兩點坐標(biāo)規(guī)律即可求出;

2)①先求出原ACx軸的交點,然后根據(jù)△ABC是軸對稱圖形,且對稱軸為第一、三象限角平分線和關(guān)聯(lián)點的定義可得:關(guān)聯(lián)點定義中QOA關(guān)于(2,0)的對稱線段OA與△ABC邊的交點,平移線段OA可發(fā)現(xiàn):當(dāng)AC左側(cè),O過點()或在()右側(cè)時符合題意,最后列不等式即可;

②由S、T的坐標(biāo)可知:線段STx軸的一部分,線段ST關(guān)于N點的對稱線段S T也是x軸的一部分,從而判斷出定義中Q是△ABC邊與x軸的交點,由圖可知:點Q只有(-20)和(1,0)兩種可能,再根據(jù)線段S T需過(-2,0)或(1,0)分類討論并列不等式即可.

解:(1)設(shè)P點坐標(biāo)為(a,b

∵點Q關(guān)于第一、三象限角平分線的對稱點為Q

∵根據(jù)關(guān)于第一三象限角平分線對稱的兩點坐標(biāo)規(guī)律:Q的橫坐標(biāo)為點Q的縱坐標(biāo),點Q的縱坐標(biāo)為點Q的橫坐標(biāo)

Q的坐標(biāo)為:(,0

P是點Q(0,)關(guān)于原點的關(guān)聯(lián)點

P Q的中點為原點

解得:

P點坐標(biāo)為:,0);

2)設(shè)原AC的解析式為y=kxb

A、C兩點坐標(biāo)代入:

解得:

∴原直線AC的解析式為:y=2x-2

當(dāng)y=0時,解得:x=1

故原ACx軸的交點為(1,0

由圖可知:△ABC是軸對稱圖形,且對稱軸為第一、三象限角平分線

關(guān)聯(lián)點的定義可知:定義中Q在△ABC邊上

∴點Q也在△ABC邊上

∵將線段AO向右平移dd>0)個單位長度,若平移后的線段上存在兩個△ABC關(guān)于點(2,0)的關(guān)聯(lián)點,

∴點Q和線段OA上的點必關(guān)于點(2,0)對稱,此時O點坐標(biāo)為(d0),A點坐標(biāo)為(2d2

故作出OA關(guān)于(2,0)的對稱線段OA,其中O坐標(biāo)為(4d,0),A坐標(biāo)為(2d,-2),Q也必在OA

即點QOA與△ABC邊的交點,

∵線段上存在兩個△ABC關(guān)于點(2,0)的關(guān)聯(lián)點,

OA與△ABC邊必須有兩個交點才滿足題意

如圖中藍線所示,平移OA可發(fā)現(xiàn),當(dāng)AC重合時,與ABC邊有一個交點,繼續(xù)向左平移即可有兩個交點,當(dāng)O過點()也有兩個交點,繼續(xù)向左平移就只有一個交點

故當(dāng)AC左側(cè),O過點()或在()右側(cè)時符合題意

解得:.

②∵點Sn+2,0)和點Tn+4,0

∴線段STx軸的一部分

∵線段ST上存在ABC關(guān)于點Nn,0)的關(guān)聯(lián)點

∴故S、T關(guān)于點Nn,0)的對稱點S坐標(biāo)為(n2,0),T坐標(biāo)為(n4,0),定義中Q在線段S T上(x軸上),

Q即為△ABC邊與x軸的交點

由圖可知,點Q只有(-2,0)和(1,0)兩種可能

線段S T需過(-20)或(1,0

當(dāng)S T過(-2,0)時

解得:;

當(dāng)S T過(1,0)時

解得:.

綜上所述:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,點D,E分別在邊BCAC上,且DEAB,過點EEFDE,交BC的延長線于點F

1)求∠F的大;

2)若CD=3,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線a≠0)經(jīng)過A﹣10)、B3,0)、C0,﹣3)三點,直線l是拋物線的對稱軸.

1)求拋物線的函數(shù)關(guān)系式;

2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);

3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點D在⊙O的直徑AB延長線上,點C在⊙O上,過點DED⊥AD,與AC的延長線相交于點E,且CD=DE.

(1)求證:CD為⊙O的切線;

(2)AB=12,且BC=CE時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列個代數(shù)式:,,,,,中,其值為正的式子的個數(shù)是(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PEAB于E,連接PQ交AB于D.

(1)當(dāng)BQD=30°時,求AP的長;

(2)當(dāng)運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“水是生命之源”,為了提高市民節(jié)約用水意識,市自來水公司調(diào)整了收費標(biāo)準(zhǔn),規(guī)定每戶每月標(biāo)準(zhǔn)用水量為a噸,如果用戶一個月用水不超過標(biāo)準(zhǔn)用水量,那么每噸水按0.6元收費;若超過了標(biāo)準(zhǔn)用水量,則超過的部分按每噸a元收費.某戶4月份用水8噸,平均每噸水0.75元;5月份用水5.5噸,平均每噸0.6元,則a的值是( )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運用了因式分解的_______

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)

若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解同學(xué)們每月零花錢數(shù)額,校園小記者隨機調(diào)查了本校部分學(xué)生,并根據(jù)調(diào)查結(jié)果繪制出如下不完整的統(tǒng)計圖表.

請根據(jù)以上圖表,解答下列問題:

(1)這次被調(diào)查的人數(shù)共有 人,a= ;

(2)計算并補全頻數(shù)分布直方圖;

(3)請估計該校1500名學(xué)生中每月零花錢數(shù)額低于90元的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案