【題目】如圖所示,為了改造小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻的最大可使用長度13 m)的空地上建造一個矩形綠化帶.除靠墻一邊(AD)外,用長為36 m的柵欄圍成矩形ABCD,中間隔有一道柵欄(EF).設(shè)綠化帶寬ABx m,面積為S m2

1Sx的函數(shù)關(guān)系式,并求出x的取值范圍

2綠化帶的面積能達到108 m2嗎?若能,請求出AB的長度;若不能,請說明理由

3當(dāng)x為何值時,滿足條件的綠化帶面積最大

【答案】(1)S=-3x2+36x(≤x<12)(2)不能 (3)

【解析】試題分析:(1)首先根據(jù)矩形的性質(zhì),由綠化帶的AB邊長為xm),可得BC=36-3x ,然后根據(jù)矩形面積的求解方法,即可求得yx之間的函數(shù)關(guān)系式,又由墻的最大可使用長度13 m,即可求得自變量的x的范圍.

(2)y=108解方程后判斷即可;

3)根據(jù)(1)中的二次函數(shù)的增減性,可知當(dāng)x6時,yx的增大而減小,故可得當(dāng)x=時,y最大,從而得到結(jié)論

試題解析:解:(1四邊形ABCD是矩形,AB=CD=EFAD=BC,AB=xm,AB+BC+CD+EF=36mBC=36-3x,綠化帶的面積為:y=x36-3x=3x2+36x,由,解得: yx之間的函數(shù)關(guān)系式為:y=3x2+36x);

2)由題意得:3x2+36x=108,解得:x1=x2=66,綠化帶的面積不能達到108 m2

3y=3x2+36x =3x62+108,a=30,當(dāng)x6時,yx的增大而減小,當(dāng)x=時,y最大,當(dāng)x時綠化帶的面積最大

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校準備組織七年級400名學(xué)生參加北京夏令營,已知用3輛小客車和1輛大客車每次可運送學(xué)生105人;用1輛小客車和2輛大客車每次可運送學(xué)生110人;

1)每輛小客車和每輛大客車各能坐多少名學(xué)生?

2)若學(xué)校計劃租用小客車x輛,大客車y輛,一次送完,且恰好每輛車都坐滿;

請你設(shè)計出所有的租車方案;

若小客車每輛需租金4000元,大客車每輛需租金7600元,請選出最省錢的租車方案,并求出最少租金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEAC,ABAD,EABCAD.

1BCDE相等嗎?說明理由.

2)若BCDE相交于點F,EF=CF.連接AFBAFDAF相等嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于A,B兩點(點A在點B的左邊),y軸交于點CP為拋物線上一動點,過點PPQBC交拋物線于點QP、Q兩點之間的距離為m

1)求直線BC的解析式

2)取線段BC的中點M,連接PM.當(dāng)m最小時,判斷以點PO、M、B為頂點的四邊形是什么特殊的平行四邊形,并說明理由

3設(shè)Ny軸上一點,在(2)的基礎(chǔ)上,當(dāng)OBN2∠OBP,求點N的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦ABM,AE⊥BDE,交CDN,連AC

1)求證:ACAN;

2)若OM∶OC3∶5,AB5,求⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1ykxbk≠0)與x軸交于點A3O),與y軸交于點B03), 直線l 2y2x與直線l1相交于點C

1)求直線 l1 的解析式;

2)求點C的坐標(biāo)和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國魏晉時期數(shù)學(xué)家劉徽編撰的最早一部測量數(shù)學(xué)著作《海島算經(jīng)》中有一題今有望海島,立兩表齊高三丈,前后相去千步,令后表與前表參相直.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從后表卻行一百二十七步人目著地,取望島峰,亦與表末參合.問島高幾何?

譯文今要測量海島上一座山峰AH的高度B處和D處樹立標(biāo)桿BCDE,標(biāo)桿的高都是3BD兩處相隔1000步(1=10,1=6尺)并且AH,CBDE在同一平面內(nèi).從標(biāo)桿BC后退123步的F處可以看到頂峰A和標(biāo)桿頂端C在同一直線上;從標(biāo)桿ED后退127步的G處可以看到頂峰A和標(biāo)桿頂端E在同一直線上.則山峰AH的高度是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax+bx+c上部分點的橫坐標(biāo)x縱坐標(biāo)y的對應(yīng)值如下表

1)根據(jù)上表填空

①拋物線與x軸的交點坐標(biāo)是____________;

②拋物線經(jīng)過點(-3,______);

2)試確定拋物線y=ax2+bx+c的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAC的平分線與BC的垂直平分線相交于點D,DEAB,DFAC,垂足分別為EF,AB=11,AC=5,則BE=______________

查看答案和解析>>

同步練習(xí)冊答案