【題目】如圖,在中,以為直徑的交于點,過點做于點,延長交的延長線于點,且.
(1)求證:是的切線;
(2)若,的半徑是3,求的長.
【答案】(1)詳見解析;(2).
【解析】
試題分析:(1)連接OE,根據(jù)圓周角定理可得,因,即可得,即可判定,再由,可得,即可得,即,所以是的切線;(2)根據(jù)已知條件易證BA=BC,再求得BA=BC=6,在Rt△OEG中求得OG=5,在Rt△FGB中,求得BF=,即可得AF=AB-BF=.
試題解析:
(1)連接OE,
則,
∵
∴
∴
∵
∴
∴
∴
又∵OE是的半徑
∴是的切線;
(2)∵,∵
∴
∴BA=BC
又的半徑為3,
∴OE=OB=OC
∴BA=BC=2×3=6
在Rt△OEG中,sin∠EGC=,即
∴OG=5
在Rt△FGB中,sin∠EGC=,即
∴BF=
∴AF=AB-BF=6-=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交軸于、兩點(點在點的左側),將該拋物線位于軸上方曲線記作,將該拋物線位于軸下方部分沿軸翻折,翻折后所得曲線記作,曲線交軸于點,連接、.
(1)求曲線所在拋物線相應的函數(shù)表達式;
(2)求外接圓的半徑;
(3)點為曲線或曲線上的一個動點,點為軸上的一個動點,若以點、、、為頂點的四邊形是平行四邊形,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的原價為100元,如果經(jīng)過兩次降價,且每次降價的百分率都是m,那么該商品現(xiàn)在的價格是_____元(結果用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ABC=∠ACB,點D在BC所在的直線上,點E在射線AC上,且AD=AE,連接DE.
(1)如圖①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度數(shù);
(2)如圖②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度數(shù);
(3)當點D在直線BC上(不與點B、C重合)運動時,試探究∠BAD與∠CDE的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com