【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②b24ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)ab其中正確結(jié)論的是___.
A. ①②⑤ B. ②③④ C. ①③⑤ D. ③④⑤
【答案】C
【解析】分析:①根據(jù)拋物線的開口方向確定a的符號,與y軸的交點(diǎn)確定c的符號,對稱軸在y軸的左側(cè)確定b的符號;②由拋物線與x軸的交點(diǎn)的個(gè)數(shù)確定;③判斷當(dāng)x=-2時(shí)的函數(shù)值;④判斷當(dāng)x=-1時(shí),a+c與b的關(guān)系,注意b的符號;⑤當(dāng)x=-1時(shí),函數(shù)取最大值,所以ax2+bx+c≤a-b+c.
詳解:①因?yàn)閽佄锞開口向下,所以a<0;
因?yàn)閽佄锞與y軸交點(diǎn)在y軸的正半軸上,所以c>0;
因?yàn)閷ΨQ軸x==-1,即b=2a,而a<0,所以b<0,
所以abc>0.
則①正確;
②因?yàn)閽佄锞與x軸有兩個(gè)交點(diǎn),所以b24ac>0.
則②錯(cuò)誤;
③因?yàn)閷ΨQ軸x=-1,所以坐標(biāo)(-2,0)的點(diǎn)與(0,0)關(guān)于x=-1對稱.
所以當(dāng)x=-2時(shí),(-2)2a+(-2)b+c>,即4a-2b+c>0,所以4a+c>2b.
則③正確;
④因?yàn)楫?dāng)x=-1時(shí),a-b+c>0,所以a+c>b,但b<0,則不能確定(a+c)2與b2的大小.
則④不正確;
⑤當(dāng)x=-1時(shí),y有最大值是y=a-b+c,
所以ax2+bx+c≤a-b+c,即x(ax+b)≤a-b.
則⑤正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動點(diǎn).
(1)求拋物線的解析式;(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有4張分別標(biāo)有數(shù)字2,3,4,6的撲克牌,除正面的數(shù)字外,牌的形狀、大小完全相同.小紅先從口袋中隨機(jī)摸出一張撲克牌并記下牌上的數(shù)字為x;小穎在剩下的3張撲克牌中隨機(jī)摸出一張撲克牌并記下牌上的數(shù)字為y,
(1)事件①:小紅摸出標(biāo)有數(shù)字3的牌,事件②:小穎摸出標(biāo)有數(shù)字1的牌,則( )
A.事件①是必然事件,事件②是不可能事件,
B.事件①是隨機(jī)事件,事件②是不可能事件,
C.事件①是必然事件,事件②是隨機(jī)事件,
D.事件①是隨機(jī)事件,事件②是必然事件,
(2)若|x-y|≤2,則說明小紅與小穎“心領(lǐng)神會”,請求出她們“心領(lǐng)神會”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅1、紅2),1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出一個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請用畫樹狀圖或列表法求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
在學(xué)習(xí)“可化為一元一次方程的分式方程及其解法”的過程中,老師提出一個(gè)問題:若關(guān)于x的分式方程=1的解為正數(shù),求a的取值范圍.
經(jīng)過獨(dú)立思考與分析后,小杰和小哲開始交流解題思路如下:
小杰說:解這個(gè)關(guān)于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>﹣4,問題解決.
小哲說:你考慮的不全面,還必須保證x≠4,即a+4≠4才行.
(1)請回答: 的說法是正確的,并簡述正確的理由是 ;
(2)參考對上述問題的討論,解決下面的問題:
若關(guān)于x的方程的解為非負(fù)數(shù),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝“元旦”,光明學(xué)校統(tǒng)一組織合唱比賽,七、八年級共92人(其中七年級的人數(shù)多于八年級的人數(shù),且七年級的人數(shù)不足90人)準(zhǔn)備統(tǒng)一購買服裝參加比賽.下面是某服裝廠給出服裝的價(jià)格表:
購買服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套以上(含91套) |
每套服裝的價(jià)格 | 60元 | 50元 | 40元 |
購買服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套以上(含91套) |
每套服裝的價(jià)格 | 60元 | 50元 | 40元 |
(1)如果兩個(gè)年級分別單獨(dú)購買服裝一共應(yīng)付5000元,求七、八年級各有多少學(xué)生參加合唱比賽;
(2)如果七年級參加合唱比賽的學(xué)生中,有10名同學(xué)抽調(diào)去參加繪畫比賽,不能參加合唱比賽,請你為兩個(gè)年級設(shè)計(jì)一種最省錢的購買服裝方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,則點(diǎn)C的縱坐標(biāo)y與x的函數(shù)解析式是( )
A.y=xB.y=1﹣xC.y=x+1D.y=x﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上,點(diǎn)A和點(diǎn)B分別位于原點(diǎn)O兩側(cè),AB=14,點(diǎn)A對應(yīng)的數(shù)為a,點(diǎn)B對應(yīng)的數(shù)為b.
(1) 若b=-4,則a的值為__________.
(2) 若OA=3OB,求a的值.
(3) 點(diǎn)C為數(shù)軸上一點(diǎn),對應(yīng)的數(shù)為c.若O為AC的中點(diǎn),OB=3BC,直接寫出所有滿足條件的c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進(jìn)行調(diào)查,將“對自己做錯(cuò)的題目進(jìn)行整理、分析、改正”(選項(xiàng)為:很少、有時(shí)、常常、總是)的調(diào)查數(shù)據(jù)進(jìn)行了整理,繪制成部分統(tǒng)計(jì)圖如圖.
請根據(jù)圖中信息,解答下列問題
(1)該調(diào)查抽取的學(xué)生數(shù)量為_________,________,“常常”對應(yīng)扇形的圓心角為_______;
(2)請你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有3200名學(xué)生,請你估計(jì)其中“總是”對錯(cuò)題進(jìn)行整理、分析、改正的學(xué)生有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com