【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=y=(x>0,0<m<n)的圖象上,對角線BDy軸,且BDAC于點P.已知點B的橫坐標為4.

(1)當m=4,n=20時.

①若點P的縱坐標為2,求直線AB的函數(shù)表達式.

②若點PBD的中點,試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.

【答案】(1)①直線AB的解析式為y=﹣x+3;理由見解析;②四邊形ABCD是菱形,(2)四邊形ABCD能是正方形,理由見解析.

【解析】(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結論;

②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結論;

(2)先確定出B(4,),進而得出A(4-t,+t),即:(4-t)(+t)=m,即可得出點D(4,8-),即可得出結論.

1)①如圖1,

m=4,

∴反比例函數(shù)為y=,當x=4時,y=1,

B(4,1),

y=2時,

2=,

x=2,

A(2,2),

設直線AB的解析式為y=kx+b,

,

,

∴直線AB的解析式為y=-x+3;

②四邊形ABCD是菱形,

理由如下:如圖2,

由①知,B(4,1),

BDy軸,

D(4,5),

∵點P是線段BD的中點,

P(4,3),

y=3時,由y=得,x=,

y=得,x=,

PA=4-=,PC=-4=,

PA=PC,

PB=PD,

∴四邊形ABCD為平行四邊形,

BDAC,

∴四邊形ABCD是菱形;

(2)四邊形ABCD能是正方形,

理由:當四邊形ABCD是正方形,

PA=PB=PC=PD,(設為t,t≠0),

x=4時,y==,

B(4,),

A(4-t,+t),

(4-t)(+t)=m,

t=4-

∴點D的縱坐標為+2t=+2(4-)=8-

D(4,8-),

4(8-)=n,

m+n=32.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,則OF的長度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(5,3),B(65),C(4,6)

(1)畫出△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標.

(2)將△A1B1C1向左平移6個單位,再向上平移5個單位,畫出平移后得到的△A2B2C2,并寫出點B2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商場銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下.若每千克漲價1元,日銷售量將減少20千克.

(1)現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實惠,那么每千克應漲價多少元?

(2)每千克水果漲價多少元時,商場每天獲得的利潤最大?獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:AB⊙O的直徑,C⊙O上一點,如圖,AB=12,BC=4.BH⊙O相切于點B,過點CBH的平行線交AB于點E.

(1)CE的長;

(2)延長CEF,使EF=,連接BF并延長BF⊙O于點G,求BG的長;

(3)在(2)的條件下,連接GC并延長GCBH于點D,求證:BD=BG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某次列車現(xiàn)階段的平均速度是千米/小時,未來還將提速,在相同的時間內(nèi),列車現(xiàn)階段行駛千米,提速后列車比現(xiàn)階段多行駛千米.

1)求列車平均提速多少千米/小時?

2)若提速后列車的平均速度是千米/小時,則題中的為多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①所示是邊長為的大正方形中有一個邊長為的小正方形.圖②是由圖①中陰影部分拼成的一個長方形.

1)設圖①中陰影部分的面積為,圖②中陰影部分的面積為,請用含的式子表示: , ;(不必化簡)

2)以上結果可以驗證的乘法公式是 ;

3)利用(2)中得到的公式,計算:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一定能確定ABC≌△DEF的條件是(

A.AB=DE,BC=EF,A=DB.A=E,AB=EF,B=D

C.A=D,AB=DE,B=ED.A=D,B=E,C=F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批發(fā)市場批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗和市場行情,預計夏季某一段時間內(nèi),甲種水果的銷售利潤(萬元)與進貨量(噸)近似滿足函數(shù)關系;乙種水果的銷售利潤(萬元)與進貨量(噸)近似滿足函數(shù)關系(其中,為常數(shù)),且進貨量噸時,銷售利潤萬元;進貨量噸時,銷售利潤萬元.

(萬元)與(噸)之間的函數(shù)關系式.

如果市場準備進甲、乙兩種水果共噸,設乙種水果的進貨量為噸,請你寫出這兩種水果所獲得的銷售利潤之和(萬元)與(噸)之間的函數(shù)關系式.并求出這兩種水果各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案