如圖,臨沂三河口大橋有一段拋物線行的工橋梁,拋物線的表達(dá)式為y=ax2+bx,小強(qiáng)騎自行車從拱梁一端O沿直線勻速穿過拱梁部分的橋面OC,當(dāng)小強(qiáng)騎自行車行駛10秒時(shí)和20秒時(shí)拱梁的高度相同,則小強(qiáng)騎自行車通過拱梁部分的橋面OC共需______秒.
∵當(dāng)小強(qiáng)騎自行車行駛10秒時(shí)和20秒時(shí)拱梁的高度相同,
∴拋物線解析式的對稱軸為:x=
10+20
2
=15,
∴拋物線y=ax2+bx與x軸的交點(diǎn)坐標(biāo)為;(0,0),(30,0).
故則小強(qiáng)騎自行車通過拱梁部分的橋面OC共需30秒.
故答案為;30.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一個(gè)拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標(biāo)系,跨度AB=44米,∠A=45°,AC1=4米,點(diǎn)D2的坐標(biāo)為(-13,-1.69),則橋架的拱高OH=______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,一單杠高2.2m,兩立柱間的距離為1.6m,將一根繩子的兩端拴于立柱與鐵杠的結(jié)合處A、B,繩子自然下垂,雖拋物線狀,一個(gè)身高0.7m的小孩站在距立柱0.4m處,其頭部剛好觸上繩子的D處,求繩子的最低點(diǎn)O到地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)中,拋物線的頂點(diǎn)P到x軸的距離是4,拋物線與x軸相交于O、M兩點(diǎn),OM=4;矩形ABCD的邊BC在線段OM上,點(diǎn)A、D在拋物線上.
(1)請寫出P、M兩點(diǎn)坐標(biāo),并求這條拋物線的解析式;
(2)設(shè)矩形ABCD的周長為l,求l的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,與兩坐標(biāo)軸交點(diǎn)為點(diǎn)A和點(diǎn)C,與拋物線y=ax2+ax+b交于點(diǎn)B,其中點(diǎn)A(0,2),點(diǎn)B(-3,1),拋物線與y軸交點(diǎn)D(0,-2).
(1)求拋物線的解析式;
(2)求點(diǎn)C的坐標(biāo);
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y1=x,y2=x2+bx+c,α,β為方程y1-y2=0的兩個(gè)根,點(diǎn)M(t,T)在函數(shù)y2的圖象上.
(Ⅰ)若α=
1
3
,β=
1
2
,求函數(shù)y2的解析式;
(Ⅱ)在(Ⅰ)的條件下,若函數(shù)y1與y2的圖象的兩個(gè)交點(diǎn)為A,B,當(dāng)△ABM的面積為
1
123
時(shí),求t的值;
(Ⅲ)若0<α<β<1,當(dāng)0<t<1時(shí),試確定T,α,β三者之間的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在Rt△ABC中,∠C=90°,邊BC的長為20cm,邊AC的長為hcm,在此三角形內(nèi)有一個(gè)矩形CFED,點(diǎn)D,E,F(xiàn)分別在AC,AB,BC上,設(shè)AD的長為xcm,矩形CFED的面積為y(單位:cm2).
(1)當(dāng)h等于30時(shí),求y與x的函數(shù)關(guān)系式;(不要求寫出自變量x的取值范圍)
(2)在(1)的條件下,矩形CFED的面積能否為180cm2?請說明理由;
(3)若y與x的函數(shù)圖象如圖②所示,求此時(shí)h的值.
(參考公式:二次函數(shù)y=ax2+bx+c,當(dāng)x=-
b
2a
時(shí),y最大(小)值=
4ac-b2
4a
.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個(gè)開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設(shè)AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時(shí),y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=-2x+3與拋物線y=x2相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),那么△OAB的面積等于______.

查看答案和解析>>

同步練習(xí)冊答案