【題目】已知二次函數(shù)yx24x+3

1)用配方法將yx24x+3化成yaxh2+k的形式;

2)在平面直角坐標(biāo)系中,畫出這個二次函數(shù)的圖象;

3)寫出當(dāng)x為何值時,y0

【答案】(1)y=(x﹣2)2﹣1;(2)見解析;(3)當(dāng)x<1或x>3,y>0.

【解析】

1)利用配方法得到y=x-22-1

2)先確定拋物線與xy軸的交點坐標(biāo),再確定拋物線的頂點坐標(biāo),然后描點得到二次函數(shù)的圖象;

3)利用函數(shù)圖象,寫出拋物線在x軸上方所對應(yīng)的自變量的范圍.

解:(1yx24x+3=(x221;

2)拋物線的頂點坐標(biāo)為(21),

當(dāng)x0時,yx24x+33,則拋物線與y軸的交點坐標(biāo)為(0,3);

當(dāng)y0時,x24x+30,解得x11,x23,則拋物線與x軸的交點坐標(biāo)為(10),(3,0);

如圖,

3)由圖像可知,當(dāng)x1x3時,y0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且EDB=C.

(1)求證:ADEDBE

(2)若DE=9cm,AE=12cm,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD 中,∠BAD 的平分線交直線 BC 于點 E,交直線 DC 于點 FD=120°

1)如圖 1,若 AD=6,求ADF 的面積;

2)如圖 2,過點 F FGCE,FGCE,連結(jié) DB、DG,求證:BD=DG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6,BC4,動點Q在邊AB上,連接CQ,將BQC沿CQ所在的直線對折得到CQN,延長QN交直線CD于點M

1)求證:MCMQ

2)當(dāng)BQ1時,求DM的長;

3)過點DDECQ,垂足為點E,直線QN與直線DE交于點F,且,求BQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點,對稱軸為,則下列結(jié)論中正確的是(

A.

B. 當(dāng)時,的增大而增大

C.

D. 是一元二次方程的一個根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A02),拋物線ymx2+4mx+5m的對稱軸與x軸交于點B

1)求點B的坐標(biāo);

2)當(dāng)m0時,過A點作直線l平行于x軸,與拋物線交于C、D兩點(CD左側(cè)),CD橫坐標(biāo)分別為x1、x2,且x2x12,求拋物線的解析式;

3)若拋物線與線段AB恰只有一個公共點,則請結(jié)合函數(shù)圖象,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果將點P繞定點M旋轉(zhuǎn)180°后與點Q重合,那么稱點P與點Q關(guān)于點M對稱,定點M叫做對稱中心,此時,點M是線段PQ的中點.如圖,在直角坐標(biāo)系中,ABO的頂點AB、O的坐標(biāo)分別為(1,0)、(0,1)、(0,0),點列P1、P2P3、中的相鄰兩點都關(guān)于ABO的一個頂點對稱,點P1與點P2關(guān)于點A對稱,點P2與點P3關(guān)于點B對稱,點P3與點P4關(guān)于點O對稱,點P4與點P5關(guān)于點A對稱,點P5與點P6關(guān)于點B對稱,點P6與點P7關(guān)于點O對稱,,且這些對稱中心依次循環(huán),已知P1的坐標(biāo)是(1,1),點P2019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作)BD是矩形ABCD的對角線,,,將繞著點B順時針旋轉(zhuǎn))得到,點AD的對應(yīng)點分別為E、F.若點E落在BD上,如圖①,則________

(探究)當(dāng)點E落在線段DF上時,CDBE交于點C.其它條件不變,如圖②.

1)求證:

2CG的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)的圖象與軸交于、兩點,與軸交于點,其中點軸的正半軸上,點軸的正半軸上,線段的長()是方程的兩個根,且點坐標(biāo)為

1)求此二次函數(shù)的表達(dá)式;

2)若點是線段上的一個動點(與點、不重合),過點于點,連接. 設(shè)的長為的面積為,求S之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)在(2)的基礎(chǔ)上試說明是否存在最大值,若存在,請求出的最大值,并求出此時點的坐標(biāo),判斷此時的形狀;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案