【題目】問(wèn)題提出:
如圖1,在等邊△ABC中,AB=9,⊙C半徑為3,P為圓上一動(dòng)點(diǎn),連結(jié)AP,BP,求AP+BP的最小值
(1)嘗試解決:
為了解決這個(gè)問(wèn)題,下面給出一種解題思路,通過(guò)構(gòu)造一對(duì)相似三角形,將BP轉(zhuǎn)化為某一條線段長(zhǎng),具體方法如下:(請(qǐng)把下面的過(guò)程填寫(xiě)完整)
如圖2,連結(jié)CP,在CB上取點(diǎn)D,使CD=1,則有
又∵∠PCD=∠
△ ∽△
∴
∴PD=BP
∴AP+BP=AP+PD
∴當(dāng)A,P,D三點(diǎn)共線時(shí),AP+PD取到最小值
請(qǐng)你完成余下的思考,并直接寫(xiě)出答案:AP+BP的最小值為 .
(2)自主探索:
如圖3,矩形ABCD中,BC=6,AB=8,P為矩形內(nèi)部一點(diǎn),且PB=4,則AP+PC的最小值為 .(請(qǐng)?jiān)趫D3中添加相應(yīng)的輔助線)
(3)拓展延伸:
如圖4,在扇形COD中,O為圓心,∠COD=120°,OC=4.OA=2,OB=3,點(diǎn)P是上一點(diǎn),求2PA+PB的最小值,畫(huà)出示意圖并寫(xiě)出求解過(guò)程.
【答案】(1)BCP,PCD,BCP,;(2)2;(3)作圖與求解過(guò)程見(jiàn)解析,2PA+PB的最小值為.
【解析】
(1)連結(jié)AD,過(guò)點(diǎn)A作AF⊥CB于點(diǎn)F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,當(dāng)點(diǎn)A,P,D在同一條直線時(shí),AP+AD最小,即可求解;
(2)在AB上截取BF=2,連接PF,PC,AB=8,PB=4,BF=2,證明△ABP∽△PBF,當(dāng)點(diǎn)F,點(diǎn)P,點(diǎn)C三點(diǎn)共線時(shí),AP+PC的值最小,即可求解;
(3)延長(zhǎng)OC,使CF=4,連接BF,OP,PF,過(guò)點(diǎn)F作FB⊥OD于點(diǎn)M,確定,且∠AOP=∠AOP,△AOP∽△POF,當(dāng)點(diǎn)F,點(diǎn)P,點(diǎn)B三點(diǎn)共線時(shí),2AP+PB的值最小,即可求解.
解:
(1)如圖1,
連結(jié)AD,過(guò)點(diǎn)A作AF⊥CB于點(diǎn)F,
∵AP+BP=AP+PD,要使AP+BP最小,
∴AP+AD最小,當(dāng)點(diǎn)A,P,D在同一條直線時(shí),AP+AD最小,
即:AP+BP最小值為AD,
∵AC=9,AF⊥BC,∠ACB=60°
∴CF=3,AF=;
∴DF=CF﹣CD=3﹣1=2,
∴AD=,
∴AP+BP的最小值為;
故答案為:;
(2)如圖2,
在AB上截取BF=2,連接PF,PC,
∵AB=8,PB=4,BF=2,
∴,且∠ABP=∠ABP,
∴△ABP∽△PBF,
∴,
∴PF=AP,
∴AP+PC=PF+PC,
∴當(dāng)點(diǎn)F,點(diǎn)P,點(diǎn)C三點(diǎn)共線時(shí),AP+PC的值最小,
∴CF=,
∴AP+PC的值最小值為2,
故答案為:2;
(3)如圖3,
延長(zhǎng)OC,使CF=4,連接BF,OP,PF,過(guò)點(diǎn)F作FB⊥OD于點(diǎn)M,
∵OC=4,FC=4,
∴FO=8,且OP=4,OA=2,
∴,且∠AOP=∠AOP
∴△AOP∽△POF
∴,
∴PF=2AP
∴2PA+PB=PF+PB,
∴當(dāng)點(diǎn)F,點(diǎn)P,點(diǎn)B三點(diǎn)共線時(shí),2AP+PB的值最小,
∵∠COD=120°,
∴∠FOM=60°,且FO=8,FM⊥OM
∴OM=4,FM=4,
∴MB=OM+OB=4+3=7
∴FB=,
∴2PA+PB的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生社團(tuán)是指學(xué)生在自愿基礎(chǔ)上結(jié)成的各種群眾性文化、藝術(shù)、學(xué)術(shù)團(tuán)體.不分年級(jí)、由興趣愛(ài)好相近的同學(xué)組成,在保證學(xué)生完成學(xué)習(xí)任務(wù)和不影響學(xué)校正常教學(xué)秩序的前提下開(kāi)展各種活動(dòng).某校就學(xué)生對(duì)“籃球社團(tuán)、動(dòng)漫社團(tuán)、文學(xué)社團(tuán)和攝影社團(tuán)”四個(gè)社團(tuán)選擇意向進(jìn)行了抽樣調(diào)查(每人選報(bào)一類(lèi)),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整).
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)求扇形統(tǒng)計(jì)圖中m的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)已知該校有1200名學(xué)生,請(qǐng)估計(jì)“文學(xué)社團(tuán)”共有多少人?
(3)在“動(dòng)漫社團(tuán)”活動(dòng)中,甲、乙、丙、丁、戊五名同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)決定從這五名同學(xué)中任選兩名參加“中學(xué)生原創(chuàng)動(dòng)漫大賽”,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的一個(gè)交點(diǎn)坐標(biāo),頂點(diǎn)A的坐標(biāo)為.直線交x軸于點(diǎn)B,交y軸于點(diǎn)C,與拋物線的對(duì)稱(chēng)軸交于點(diǎn)D,E為y軸上的一個(gè)動(dòng)點(diǎn).
(1)求這條拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)若以C、D、E為頂點(diǎn)的三角形與△ACD相似,求點(diǎn)E的坐標(biāo);
(3)若點(diǎn)E關(guān)于直線BC的對(duì)稱(chēng)點(diǎn)M恰好落在拋物線上,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC、△DCE、△FEG、△HGI是4個(gè)全等的等腰三角形,底邊BC、CE、EG、GI在同一直線上,且AB=2,BC=1,連接AI,交GH于點(diǎn)Q.
(1)求證:△IAB∽△ACB;
(2)求HQ:QG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年3月,我市某中學(xué)舉行了“愛(ài)我中國(guó)朗誦比賽”活動(dòng),根據(jù)學(xué)生的成績(jī)劃分為A、B、C、D四個(gè)等級(jí),并繪制了不完整的兩種統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,回答下列問(wèn)題:
(1)參加朗誦比賽的學(xué)生共有 人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中,m= ,n= ;C等級(jí)對(duì)應(yīng)扇形有圓心角為 度;
(3)學(xué)校欲從獲A等級(jí)的學(xué)生中隨機(jī)選取2人,參加市舉辦的朗誦比賽,請(qǐng)利用列表法或樹(shù)形圖法,求獲A等級(jí)的小明參加市朗誦比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線:與軸,軸分別交于,兩點(diǎn),且點(diǎn),點(diǎn)在軸正半軸上運(yùn)動(dòng),過(guò)點(diǎn)作平行于軸的直線.
(1)求的值和點(diǎn)的坐標(biāo);
(2)當(dāng)時(shí),直線與直線交于點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),求反比例函數(shù)的解析式;
(3)當(dāng)時(shí),若直線與直線和(2)反比例函數(shù)的圖象分別交于點(diǎn),,當(dāng)間距離大于等于2時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,邊長(zhǎng),,兩動(dòng)點(diǎn)、分別從、同時(shí)出發(fā),點(diǎn)從沿向勻速運(yùn)動(dòng),每秒,點(diǎn)從沿向勻速運(yùn)動(dòng),每秒,兩點(diǎn)、中有一點(diǎn)到達(dá)矩形的頂點(diǎn)則運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為秒,的面積為
(1)求與的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
(2)當(dāng)、兩點(diǎn)運(yùn)動(dòng)多少秒時(shí),的面積為;
(3)當(dāng)取何值時(shí),的面積最大?并求出其最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O(0,0),A(0,1)是正方形的兩個(gè)頂點(diǎn),以對(duì)角線為邊作正方形,再以正方形的對(duì)角線作正方形,…,依此規(guī)律,則點(diǎn)的坐標(biāo)是( )
A. (-8,0) B. (0,8)
C. (0,8) D. (0,16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC 紙板中, AB =AC=5 , BC = 2 ,P為AB上一點(diǎn),過(guò)P沿直線剪下一個(gè)與△ABC 相似的小三角形紙板,恰有 3 種不同的剪法,那么BP長(zhǎng)可以為( ).
A.3.6B.2.6C.1.6D.0.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com