【題目】甲、乙兩輛汽車沿同一公路從A地出發(fā)前往路程為100千米的B地,乙車比甲車晚出發(fā)15分鐘,行駛過程中所行駛的路程分別用y1、y2(千米)表示,它們與甲車行駛的時間x(分鐘)之間的函數(shù)關系如圖所示.

1)分別求出y1、y2關于x的函數(shù)解析式并寫出定義域;

2)乙車行駛多長時間追上甲車?

【答案】(1); (2)25

【解析】

1)根據(jù)函數(shù)圖象中的數(shù)據(jù),可以求得、關于x的函數(shù)解析式并寫出定義域;

2)令(1)中的兩個函數(shù)的函數(shù)相等,求出x的值,然后再減去15,即可得到乙車行駛多長時間追上甲車.

解:(1)設關于的函數(shù)解析式是,

根據(jù)題意,得:,,

關于的函數(shù)解析式是

關于的函數(shù)解析式是,

根據(jù)題意,得:,

解得:,

關于的函數(shù)解析式是

2)根據(jù)題意,得:

解得:,

(分鐘),

答:乙車行駛25分鐘追上甲車.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點M是射線CO上的一個動點,∠AOC=60°,則當△ABM為直角三角形時,AM的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,,點D、E分別是邊的中點,連接,將繞點A按順時針方向旋轉,記旋轉角為所在直線相交所成的銳角為

1)問題發(fā)現(xiàn)

時,________;________°

2)拓展探究

試判斷:當時,的大小有無變化?請僅就圖2的情形給出證明.

3)在旋轉過程中,當時,直接寫出此時的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作

如圖①,將矩形紙片沿對角線翻折,使點落在矩形所在平面內,相交于點E,連接

解決問題

1)在圖①中,

的位置關系為________;

②將剪下后展開,得到的圖形是________;

2)若圖①中的矩形變?yōu)槠叫兴倪呅螘r(),如圖②所示,結論①和結論②是否成立,若成立,請?zhí)暨x其中的一個結論加以證明,若不成立,請說明理由;

拓展應用

3)在圖②中,若,當恰好為直角三角形時,求的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,將矩形繞點旋轉,點的對應點分別為、,當落在邊的延長線上時,邊與邊的延長線交于點,聯(lián)結,那么線段的長度為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB=90°BC=3AC=4D是邊AB的中點,點E為邊AC上的一個動點(與點A、C不重合),過點EEFAB,交邊BC于點F.聯(lián)結DEDF,設CE=x

1)當x =1時,求DEF的面積;

2)如果點D關于EF的對稱點為D’,點D’ 恰好落在邊AC上時,求x的值;

3)以點A為圓心,AE長為半徑的圓與以點F為圓心,EF長為半徑的圓相交,另一個交點H恰好落在線段DE上,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小云統(tǒng)計了自己所住小區(qū)51日至30日的廚余垃圾分出量(單位:千克),相關信息如下:

.小云所住小區(qū)51日至30日的廚余垃圾分出量統(tǒng)計圖:

.小云所住小區(qū)51日至30日分時段的廚余垃圾分出量的平均數(shù)如下:

時段

1日至10

11日至20

21日至30

平均數(shù)

100

170

250

1)該小區(qū)51日至30日的廚余垃圾分出量的平均數(shù)約為 (結果取整數(shù))

2)已知該小區(qū)4月的廚余垃圾分出量的平均數(shù)為60,則該小區(qū)51日至30日的廚余垃圾分出量的平均數(shù)約為4月的 倍(結果保留小數(shù)點后一位);

3)記該小區(qū)51日至10日的廚余垃圾分出量的方差為511日至20日的廚余垃圾分出量的方差為521日至30日的廚余垃圾分出量的方差為.直接寫出的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學舉行鋼筆書法大賽,對各年級同學的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.

請結合圖中相關信息解答下列問題:

(1)扇形統(tǒng)計圖中三等獎所在扇形的圓心角的度數(shù)是______度;

(2)請將條形統(tǒng)計圖補全;

(3)獲得一等獎的同學中有來自七年級,有來自九年級,其他同學均來自八年級.現(xiàn)準備從獲得一等獎的同學中任選2人參加市級鋼筆書法大賽,請通過列表或畫樹狀圖的方法求所選出的2人中既有八年級同學又有九年級同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組為了測量大樓的高度,先沿著斜坡走了米到達坡頂點處,然后在點處測得大樓頂點的仰角為,已知斜坡的坡度為,點到大樓的距離米,求大樓的高度.(參考數(shù)據(jù):,

查看答案和解析>>

同步練習冊答案