【題目】如圖,是等邊三角形,上且,是直線 上一動(dòng)點(diǎn),線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí), 則線段的最小值是________

【答案】1+

【解析】

過(guò)EEG⊥BCG,過(guò)AAP⊥EGP,過(guò)FFH⊥EGH,則∠DGE=∠EHF=90°,依據(jù)△DEG≌△EFHAAS),即可得到HF=EG,進(jìn)而得到當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),點(diǎn)F與直線GH的距離為個(gè)單位,據(jù)此可得當(dāng)AF⊥EG時(shí),AF的最小值為AP+HF=1+

解:如圖所示,過(guò)EEG⊥BCG,過(guò)AAP⊥EGP,過(guò)FFH⊥EGH,則∠DGE=∠EHF=90°,

∵∠DEF=90°

∴∠EDG+∠DEG=90°=∠HEF+∠DEG,

∴∠EDG=∠FEH,

∵EF=DE,

∴△DEG≌△EFHAAS),

∴HF=EG,

∵△ABC是等邊三角形,AB=3AE=AC,

∴AE=2,CE=1,∠AEH=∠CEG=30°

∴CG=CE=,AP=AE=1,

∴EG=tan60°×CG=CG=

∴HF=,

當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),點(diǎn)F與直線GH的距離始終為個(gè)單位,

當(dāng)AF⊥EG時(shí),AF的最小值為AP+HF=1+

故答案為:1+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,雙曲線與直線yax+ba≠0)交于A、B兩點(diǎn),直線AB分別交x軸、y軸于C、D兩點(diǎn),Ex軸上一點(diǎn).已知OAOCOE,A點(diǎn)坐標(biāo)為(34).

1)將線段OE沿x軸平移得線段O′E′(如圖1),在移動(dòng)過(guò)程中,是否存在某個(gè)位置使|BO′AE′|的值最大?若存在,求出|BO′AE′|的最大值及此時(shí)點(diǎn)O′的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

2)將直線OA沿射線OE平移,平移過(guò)程中交的圖象于點(diǎn)MM不與A重合),交x軸于點(diǎn)N(如圖3).在平移過(guò)程中,是否存在某個(gè)位置使MNE為以MN為腰的等腰三角形?若存在,求出M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB45°,點(diǎn)DAB上,點(diǎn)EAC的延長(zhǎng)線上,EDAB,EDBC于點(diǎn)FABDF,3DF5EFCFl,則AC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點(diǎn),以BD為直徑的O經(jīng)過(guò)點(diǎn)E,且交BC于點(diǎn)F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,等邊ABC,點(diǎn) E BA 的延長(zhǎng)線上,點(diǎn) D BC 上,且 ED=EC

1)如圖 1,求證:AE=DB;

2)如圖 2,將BCE 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 60°ACF(點(diǎn) B、E 的對(duì)應(yīng)點(diǎn)分別為點(diǎn) AF),連接 EF.在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖中四對(duì)線段,使每對(duì)線段長(zhǎng)度之差等于 AB 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形中,,點(diǎn)是射線上一動(dòng)點(diǎn),以為邊向右側(cè)作等邊,點(diǎn)的位置隨點(diǎn)的位置變化而變化.

(1)如圖1,當(dāng)點(diǎn)在菱形內(nèi)部或邊上時(shí),連接,的數(shù)量關(guān)系是 ,的位置關(guān)系是 ;

(2)當(dāng)點(diǎn)在菱形外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,

請(qǐng)說(shuō)明理由(選擇圖2,圖3中的一種情況予以證明或說(shuō)理).

(3) 如圖4,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),連接,若 , ,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),歷時(shí)7分鐘同時(shí)到達(dá)C點(diǎn),乙機(jī)器人始終以60/分的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(米)與他們的行走時(shí)間x(分鐘)之間的函數(shù)圖象,請(qǐng)結(jié)合圖象,回答下列問(wèn)題:

(1)A、B兩點(diǎn)之間的距離是   米,甲機(jī)器人前2分鐘的速度為   /分;

(2)若前3分鐘甲機(jī)器人的速度不變,求線段EF所在直線的函數(shù)解析式;

(3)若線段FGx軸,則此段時(shí)間,甲機(jī)器人的速度為   /分;

(4)求A、C兩點(diǎn)之間的距離;

(5)若前3分鐘甲機(jī)器人的速度不變,直接寫(xiě)出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃修建一條長(zhǎng)15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍

(1)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?

(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬(wàn)元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬(wàn)元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過(guò)5.2萬(wàn)元,甲工程隊(duì)至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為矩形,以A為圓心,AD為半徑的弧交AB的延長(zhǎng)線于點(diǎn)E,連接BD,若AD=2AB=4,則圖中陰影部分的面積為______

查看答案和解析>>

同步練習(xí)冊(cè)答案