【題目】計算: sin60°﹣4cos230°+sin45°tan60°+( 2

【答案】解:原式= × ﹣4× + × +4= +1
【解析】原式利用特殊角的三角函數(shù)值,以及負整數(shù)指數(shù)冪法則計算即可得到結果.
【考點精析】通過靈活運用整數(shù)指數(shù)冪的運算性質和特殊角的三角函數(shù)值,掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸交于點A、點B(點A在點B左側),與y軸交于點C,點D為拋物線的頂點,已知點A、點B的坐標分別為A(﹣1,0)、B(3,0).

(1)求拋物線的解析式;
(2)在直線BC上方的拋物線上找一點P,使△PBC的面積最大,求P點的坐標;
(3)如圖2,連接BD、CD,拋物線的對稱軸與x軸交于點E,過拋物線上一點M作MN⊥CD,交直線CD于點N,求當∠CMN=∠BDE時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF= ,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:n為正整數(shù),點A1(x1 , y1),A2(x2 , y2),A3(x3 , y3),A4(x4 , y4)…An(xn , yn)均在直線y=x﹣1上,點B1(m1 , p1),B2(m2 , p2),B3(m3 , p3)…Bn(mn , pn)均在雙曲線y=﹣ 上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,A3B3⊥x軸,…,AnBn⊥x軸,BnAn+1⊥y軸,若點A1的橫坐標為﹣1,則點A2017的坐標為(
A.(﹣1,﹣2)
B.(2,1)
C.( ,﹣
D.( ,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)操作發(fā)現(xiàn):如圖,小明在矩形紙片ABCD的邊AD上取中點E,將△ABE沿BE折疊后得到△GBE,且點G在矩形ABCD內部,將BG延長交DC于點F,認為GF=DF,你同意嗎?說明理由.
(2)問題解決:保持(1)中條件不變,若DC=2FC,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關系,并加以證明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和線段PE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,對角線AC、BD相交于點O,設銳角∠AOB=α,將△DOC按逆時針方向旋轉得到△D′OC′(0°<旋轉角<90°)連接AC′、BD′,AC′與BD′相交于點M.
(1)當四邊形ABCD為矩形時,如圖1.求證:△AOC′≌△BOD′.

(2)當四邊形ABCD為平行四邊形時,設AC=kBD,如圖2.
①猜想此時△AOC′與△BOD′有何關系,證明你的猜想;
②探究AC′與BD′的數(shù)量關系以及∠AMB與α的大小關系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,AC與BD相交于點O,∠A=30°,∠COD=105°.則∠D的大小是(
A.30°
B.45°
C.65°
D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個不透明的口袋,甲口袋中裝有3個分別標有數(shù)字﹣1,﹣2,﹣4的小球,乙口袋中裝有3個分別標有數(shù)字﹣3,5,6的小球,它們的形狀、大小完全相同,現(xiàn)隨機從甲口袋中摸出一個小球記下數(shù)字,再從乙口袋中摸出一個小球記下數(shù)字.
(1)請用列表或樹狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結果;
(2)求出兩個數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

同步練習冊答案