【題目】如圖,⊙O的直徑AB10cm,弦BC=8cm,∠ACB的平分線交⊙O于點(diǎn)D.連接AD,BD.求四邊形ABCD的面積.

【答案】S四邊形ADBC=49(cm2).

【解析】

根據(jù)直徑所對(duì)的角是90°,判斷出△ABC和△ABD是直角三角形,根據(jù)圓周角∠ACB的平分線交⊙OD,判斷出△ADB為等腰直角三角形,根據(jù)勾股定理求出AD、BDAC的值,再根據(jù)S四邊形ADBC=SABD+SABC進(jìn)行計(jì)算即可.

AB為直徑,

∴∠ADB=90°,

又∵CD平分∠ACB,即∠ACD=BCD

,

AD=BD,

∵直角ABD中,AD=BD,AD2+BD2=AB2=102,

AD=BD=5,

SABD=ADBD=×5×5=25(cm2),

在直角ABC中,AC==6(cm),

SABC=ACBC=×6×8=24(cm2),

S四邊形ADBC=SABD+SABC=25+24=49(cm2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門(mén)工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測(cè)得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達(dá)B處時(shí),測(cè)得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,AC、DC為弦,ACD=60°,P為AB延長(zhǎng)線上的點(diǎn),APD=30°.

(1)求證:DP是O的切線;

(2)若O的半徑為3cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時(shí)成立的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2+3x8的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C

1)求直線BC的解析式;

2)點(diǎn)F是直線BC下方拋物線上的一點(diǎn),當(dāng)BCF的面積最大時(shí),在拋物線的對(duì)稱軸上找一點(diǎn)P,使得BFP的周長(zhǎng)最小,請(qǐng)求出點(diǎn)F的坐標(biāo)和點(diǎn)P的坐標(biāo);

3)在(2)的條件下,是否存在這樣的點(diǎn)Q0m),使得BFQ為等腰三角形?如果有,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);如果沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某同學(xué)用圓規(guī)BOA畫(huà)一個(gè)半徑為4cm的圓,測(cè)得此時(shí)∠O90°,為了畫(huà)一個(gè)半徑更大的同心圓,固定A端不動(dòng),將B端向左移至B處,此時(shí)測(cè)得∠O120°,則BB的長(zhǎng)為_______厘米

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形 ABCD 中,AB6cmBC8cm,動(dòng)點(diǎn) P 2cm/s 的速度從點(diǎn) A 出發(fā),沿AC 向點(diǎn) C 移動(dòng),同時(shí)動(dòng)點(diǎn) Q 1cm/s 的速度從點(diǎn) C 出發(fā),沿 CB 向點(diǎn) B 移動(dòng),設(shè) PQ 兩點(diǎn)移動(dòng) ts0t5)后,CQP 的面積為 Scm2.在 P、Q 兩點(diǎn)移動(dòng)的過(guò)程中,CQP 的面積能否等于 3.6cm2?若能,求出此時(shí) t 的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB與半徑為2⊙O相切于點(diǎn)C,點(diǎn)DE、F⊙O上三個(gè)點(diǎn),EF//AB,若EF=2,則∠EDC的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線AB:y=﹣x+b分別與x,y軸交于A(6,0)、B 兩點(diǎn),過(guò)點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.

(1)求點(diǎn)B的坐標(biāo).

(2)求直線BC的解析式.

(3)直線 EF 的解析式為y=x,直線EFAB于點(diǎn)E,交BC于點(diǎn) F,求證:SEBO=SFBO

查看答案和解析>>

同步練習(xí)冊(cè)答案