【題目】如圖,銳角三角形ABC中(AB>AC),AH⊥BC,垂足為H,E、D、F分別是各邊的中點(diǎn),則四邊形EDHF是( )
A.梯形
B.等腰梯形
C.直角梯形
D.矩形
【答案】B
【解析】解:∵E、D、F分別是各邊的中點(diǎn).∴ED∥AC,ED= AC=FC,EF∥BC,EF= BC=DC.
∴四邊形EFCD是平行四邊形.
∴DE=CF.
∵AH⊥BC,垂足為H,F(xiàn)是AC的中點(diǎn).
∴HF= AC=CF.
∴HF=DE.
∵DH∥EF.
∴四邊形EDHF是等腰梯形.
故選B.
【考點(diǎn)精析】掌握三角形中位線定理和等腰梯形的判定是解答本題的根本,需要知道連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別作勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)P從出發(fā)起運(yùn)動(dòng)了t秒.
(1)如果點(diǎn)Q的速度為每秒2個(gè)單位,①試分別寫(xiě)出這時(shí)點(diǎn)Q在OC上或在CB上時(shí)的坐標(biāo)(用含t的代數(shù)式表示,不要求寫(xiě)出t的取值范圍);
②求t為何值時(shí),PQ∥OC?
(2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過(guò)的路程之和恰好為梯形OABC的周長(zhǎng)的一半,①試用含t的代數(shù)式表示這時(shí)點(diǎn)Q所經(jīng)過(guò)的路程和它的速度;
②試問(wèn):這時(shí)直線PQ是否可能同時(shí)把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展以感恩教育為主題的藝術(shù)活動(dòng),舉辦了四個(gè)項(xiàng)目的比賽,它們分別是演講、唱歌、書(shū)法、繪畫(huà).要求每位同學(xué)必須參加,且限報(bào)一項(xiàng)活動(dòng).以九年級(jí)(1)班為樣本進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖示所給出的信息解答下列問(wèn)題.
(1)求出參加繪畫(huà)比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?
(2)求出扇形統(tǒng)計(jì)圖中參加書(shū)法比賽的學(xué)生所在扇形圓心角的度數(shù)?
(3)若該校九年級(jí)學(xué)生有600人,請(qǐng)你估計(jì)這次藝術(shù)活動(dòng)中,參加演講和唱歌的學(xué)生各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正方形和兩個(gè)等邊三角形的位置如圖所示,若∠3=50°,則∠1+∠2=( )
A.90°
B.100°
C.130°
D.180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果c為有理數(shù),且c≠0,下列不等式中正確的是( )
A.3c>2c
B.
C.3+c>2+c
D.﹣3c<﹣2c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生對(duì)乒乓球、羽毛球、排球、籃球和足球五種球類(lèi)運(yùn)動(dòng)項(xiàng)目的喜愛(ài)情況(每位同學(xué)必須且只能從中選擇一項(xiàng)),隨機(jī)選取了若干名學(xué)生進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成了不完整的統(tǒng)計(jì)圖.
(1)參加調(diào)查的學(xué)生一共有名,圖2中乒乓球所在扇形的圓心角為°;
(2)在圖1中補(bǔ)全條形統(tǒng)計(jì)圖(標(biāo)上相應(yīng)數(shù)據(jù));
(3)若該校共有2000名同學(xué),請(qǐng)根據(jù)抽樣調(diào)查數(shù)據(jù)估計(jì)該校同學(xué)中喜歡足球運(yùn)動(dòng)的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com