【題目】如圖,在平行四邊形ABCD中,E、F分別是AD、BC的中點(diǎn),連接AF、BE交于點(diǎn)G,連接CE、DF交于點(diǎn)H.
(1)求證:四邊形EGFH為平行四邊形;
(2)當(dāng)= 時(shí),四邊形EGFH為矩形。
【答案】(1)見解析;
(2)當(dāng)時(shí),平行四邊形EGFH是矩形,理由見解析.
【解析】
(1)可分別證明四邊形AFCE是平行四邊形,四邊形BFDE是平行四邊形,從而得出GF∥EH,GE∥FH,即可證明四邊形EGFH是平行四邊形.
(2)證出四邊形ABFE是菱形,得出AF⊥BE,即∠EGF=90°,即可得出結(jié)論.
證明:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC.
∵點(diǎn)E. F分別是AD、BC的中點(diǎn)
∴AE=ED=AD,BF=FC=BC,
∴AE∥FC,AE=FC.
∴四邊形AECF是平行四邊形.
∴GF∥EH.
同理可證:ED∥BF且ED=BF.
∴四邊形BFDE是平行四邊形.
∴GE∥FH.
∴四邊形EGFH是平行四邊形.
(2)當(dāng)時(shí),平行四邊形EGFH是矩形.理由如下:
連接EF,如圖所示:
由(1)同理可證四邊形ABFE是平行四邊形,
當(dāng)時(shí),即BC=2AB,AB=BF,
∴四邊形ABFE是菱形,
∴AF⊥BE,即∠EGF=90,
∴平行四邊形EGFH是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個(gè)等式:,,給出定義如下:我們稱使等式a﹣b=ab+1的成立的一對(duì)有理數(shù)a,b為“共生有理數(shù)對(duì)”,記為(a,b),如:數(shù)對(duì) , ,都是“共生有理數(shù)對(duì)”.
(1)數(shù)對(duì) , 中是“共生有理數(shù)對(duì)”的是 ;
(2)若(m,n)是“共生有理數(shù)對(duì)”,則(﹣n,﹣m) “共生有理數(shù)對(duì)”(填“是”或“不是”);
(3)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的“共生有理數(shù)對(duì)”為 ;(注意:不能與題目中已有的“共生有理數(shù)對(duì)”重復(fù))
(4)若(a,3)是“共生有理數(shù)對(duì)”,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索代數(shù)式與代數(shù)式的關(guān)系.
(1)當(dāng),時(shí),分別計(jì)算兩個(gè)代數(shù)式的值.
(2)當(dāng),時(shí),分別計(jì)算兩個(gè)代數(shù)式的值.
(3)你發(fā)現(xiàn)了什么規(guī)律?
(4)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:20182-2×2018×2019+20192.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,E為對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連結(jié)DE并延長交射線AB于點(diǎn)F,連結(jié)BE.
(1)求證:∠AFD=∠EBC;
(2)若∠DAB=90°,當(dāng)△BEF為等腰三角形時(shí),求∠EFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)y2=的圖象分別交于C、D兩點(diǎn),點(diǎn)D的坐標(biāo)為(2,-3),點(diǎn)B是線段AD的中點(diǎn).則不等式 k1x+b —>0的解集是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,點(diǎn)E為線段AC上一點(diǎn),連接DE,過點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG。
(1)求證:矩形DEFG是正方形。
(2)當(dāng)點(diǎn)E從A點(diǎn)運(yùn)動(dòng)到C點(diǎn)時(shí);
①求證:∠DCG的大小始終不變;
②若正方形ABCD的邊長為2,則點(diǎn)G運(yùn)動(dòng)的路徑長為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年四月份,某校在孝感市爭創(chuàng)“全國文明城市” 活動(dòng)中,組織全體學(xué)生參加了“弘揚(yáng)孝感文化,爭做文明學(xué)生”知識(shí)競(jìng)賽,賽后隨機(jī)抽取了部分參賽學(xué)生的成績,按得分劃分成 六個(gè)等級(jí),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.
請(qǐng)根據(jù)圖表提供的信息,解答下列問題:
(1)本次抽樣調(diào)查樣本容量為 ,表中: , ;扇形統(tǒng)計(jì)圖中, 等級(jí)對(duì)應(yīng)的圓心角 等于 度;(4分=1分+1分+1分)
(2)該校決定從本次抽取的 等級(jí)學(xué)生(記為甲、乙、丙、。┲,隨機(jī)選擇 名成為學(xué)校文明宣講志愿者,請(qǐng)你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:
(1)請(qǐng)你根據(jù)圖中A、B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù)A: ,B: ;
(2)觀察數(shù)軸,與點(diǎn)A的距離為4的點(diǎn)表示的數(shù)是: ;
(3)若將數(shù)軸折疊,使得A點(diǎn)與﹣3表示的點(diǎn)重合,則B點(diǎn)與數(shù) 表示的點(diǎn)重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙O的圓心A的坐標(biāo)為(1,0),半徑為1,點(diǎn)P為直線y=x+3上的動(dòng)點(diǎn),過點(diǎn)P作⊙A的切線,且點(diǎn)為B,則PB的最小值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com