【題目】如圖,AB為⊙O直徑,點(diǎn)D為AB下方⊙O上一點(diǎn),點(diǎn)C為弧ABD中點(diǎn),連接CD,CA.
(1)求證:∠ABD=2∠BDC;
(2)過點(diǎn)C作CH⊥AB于H,交AD于E,求證:EA=EC;
(3)在(2)的條件下,若OH=5,AD=24,求線段DE的長

【答案】
(1)解:如圖1,設(shè)∠BDC=α,∠DAC=β,

則∠CAB=∠BDC=α,

∵點(diǎn)C為弧ABD中點(diǎn),

= ,

∴∠ADC=∠DAC=β,

∴∠DAB=β﹣α,

連接AD,

∵AB為⊙O直徑,

∴∠ADB=90°,

∴α+β=90°,

∴β=90°﹣α,

∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),

∴∠ABD=2α,

∴∠ABD=2∠BDC;


(2)解:∵CE⊥AB,

∴∠ACE+∠CAB=∠ADC+∠BDC=90°,

∵∠CAB=∠CDB,

∴∠ACE=∠ADC,

∵∠CAE=∠ADC,

∴∠ACE=∠CAE,

∴AE=CE;


(3)解:如圖2,連接OC,

∴∠COB=2∠CAB,

∵∠ABD=2∠BEC,∠BDC=∠CAB,

∴∠COB=∠ABD,

∵∠OHC=∠ADB=90°,

∴△OCH∽△ABD,

∵OH=5,

∴BD=10,

∴AB= =26,

∴AO=13,

∴AH=18,

∵△AHE∽△ADB,

,即 = ,

∴AE= ,

∴DE=


【解析】(1)如圖1,設(shè)∠BDC=α,∠DAC=β,根據(jù)圓周角定理得到∠CAB=∠BDC=α,連接AD,由AB為⊙O直徑,得到∠ADB=90°,根據(jù)余角的性質(zhì)即可得到結(jié)論;(2)根據(jù)已知條件得到∠ACE=∠ADC,等量代換得到∠ACE=∠CAE,于是得到結(jié)論;(3)如圖2,連接OC,根據(jù)圓周角定理得到∠COB=2∠CAB,等量代換得到∠COB=∠ABD,根據(jù)相似三角形的性質(zhì)得到OH=5,根據(jù)勾股定理得到AB= =26,由相似三角形的性質(zhì)即可得到結(jié)論.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和垂徑定理的相關(guān)知識點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣ x﹣ 與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2 x+c(a≠0)經(jīng)過A,B,C三點(diǎn).

(1)求過A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
(2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長最?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,連接AE,BD交于點(diǎn)O,AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.
(1)如圖1,求證:AE=BD;
(2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請直接寫出圖2中四對全等的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y= 在第一象限的圖象如圖所示,過點(diǎn)A(1,0)作x軸的垂線,交反比例函數(shù)y= 的圖象于點(diǎn)M,△AOM的面積為3.

(1)求反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點(diǎn)在反比例函數(shù)y= 的圖象上,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D在AC邊上,BD=CD,E在BC邊上,AE=AB,過點(diǎn)E作EF⊥BC,交AC于F.若AD=5,CE=8,則EF的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OB=3,BC是⊙O的弦,∠ABC的平分線交⊙O于點(diǎn)D,連接OD,若∠BAC=20°,則 的長等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),直線y= x+1與拋物線y= x2+bx+c交于A,B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為4.

(1)求拋物線的解析式;
(2)拋物線y= x2+bx+c 交x軸正半軸于點(diǎn)C,橫坐標(biāo)為t的點(diǎn)P在第四象限的拋物線上,過點(diǎn)P作AB的垂線交x軸于點(diǎn)E,點(diǎn)Q為垂足,設(shè)CE的長為d,求d與t之間的函數(shù)關(guān)系式,直接寫出自變量t的取值范圍:
(3)在(2)的條件下,過點(diǎn)B作y軸的平行線交x軸于點(diǎn)D,連接DQ.當(dāng)∠AQD=3∠PQD時,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生在家使用電腦的情況(分為“總是、較多、較少、不用”四種情況),隨機(jī)在八、九年級各抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,繪制成部分統(tǒng)計(jì)圖如下所示.請根據(jù)圖中信息,回答下列問題:
(1)九年級一共抽查了名學(xué)生,圖中的a= , “總是”對應(yīng)的圓心角為度.
(2)根據(jù)提供的信息,補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該校九年級共有900名學(xué)生,請你統(tǒng)計(jì)其中使用電腦情況為“較少”的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標(biāo)系中,動點(diǎn)M、N以每秒1個單位的速度分別從點(diǎn)A、C同時出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個動點(diǎn)運(yùn)動了t秒時,過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.

(1)點(diǎn)B的坐標(biāo)為;用含t的式子表示點(diǎn)P的坐標(biāo)為;
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0<t<6),并求當(dāng)t為何值時,S有最大值?
(3)試探究:在上述運(yùn)動過程中,是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC的 ?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案