【題目】2015年2月27日,在中央全面深化改革領導小組第十次會議上,審議通過了《中國足球改革總體方案》,體制改革、聯(lián)賽改革、校園足球等成為改革的亮點.在聯(lián)賽方面,作為國內(nèi)最高水平的聯(lián)賽﹣﹣中國足球超級聯(lián)賽今年已經(jīng)進入第12個年頭,中超聯(lián)賽已經(jīng)引起了世界的關注.圖9是某一年截止倒數(shù)第二輪比賽各隊的積分統(tǒng)計圖.
(1)根據(jù)圖,請計算該年有_____支中超球隊參賽;
(2)補全圖一中的條形統(tǒng)計圖;
(3)根據(jù)足球比賽規(guī)則,勝一場得3分,平一場得1分,負一場得0分,最后得分最高者為冠軍.倒數(shù)第二輪比賽后積分位于前4名的分別是A隊49分,B隊49分,C隊48分,D隊45分.在最后一輪的比賽中,他們分別和第4名以后的球隊進行比賽,已知在已經(jīng)結束的一場比賽中,A隊和對手打平.請用列表或者畫樹狀圖的方法,計算C隊奪得冠軍的概率是多少?
【答案】(1)16;(2)見解析;(3).
【解析】
根據(jù)題意列表得出A、B、C、D四個隊與第4名以后的球隊進行比賽所有得分結果,由表格中體現(xiàn)的所有情況,選出符合題意C隊獲勝的情況的情況總數(shù),從而估算出C隊獲勝的概率.
解:(1)4÷25%=16(支),
答:該年有16支中超球隊參賽;
故答案為:16;
(2)積分為39.5﹣44.5的球隊為16﹣1﹣3﹣6﹣4=2(支),
補全條形統(tǒng)計圖如圖所示;
(3)依題意列表格:
由表格得到共有如下27種比賽積分結果:
(50,52,51,48);(50,52,51,46);(50,52,51,45);
(50,52,49,48);(50,52,49,46);(50,52,49,45);
(50,52,48,48);(50,52,48,46);(50,52,48,45);
(50,50,51,48);(50,50,51,46);(50,50,51,45);
(50,50,49,48);(50,50,49,46);(50,50,49,45);
(50,50,48,48);(50,50,48,46);(50,50,48,45);
(50,49,51,48);(50,49,51,46);(50,49,51,45);
(50,49,49,48);(50,49,49,46);(50,49,49,45);
(50,49,48,48);(50,49,48,46);(50,49,48,45);
其中已知A隊打平,C隊獲勝的情況恰有6種,
故P(C隊獲勝)
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為2000元、1700元的A、B兩種型號的空調(diào),如表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 18000元 |
第二周 | 4臺 | 10臺 | 31000元 |
(進價、售價均保持不變,利潤=銷售總收入進貨成本)
(1)求A、B兩種型號的空調(diào)的銷售單價;
(2)若超市準備用不多于54000元的金額再采購這兩種型號的空調(diào)共30臺,求A種型號的空調(diào)最多能采購多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是AB上一點,以OA為半徑的⊙O與BC相切于點D,與AB交于點E,連接ED并延長交AC的延長線于點F.
(1)求證:AE=AF;
(2)若DE=3,sin∠BDE=,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是高,BD=6,CD=4,tan∠BAD=,P是線段AD上一動點,一機器人從點A出發(fā)沿AD以個單位/秒的速度走到P點,然后以1個單位/秒的速度沿PC走到C點,共用了t秒,則t的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=﹣x2+2x﹣與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,頂點為D,對稱軸與x軸交于點E,直線CE交拋物線于點F(異于點C),直線CD交x軸交于點G.
(1)如圖1,求直線CE的解析式和頂點D的坐標;
(2)如圖1,點P為直線CF上方拋物線上一點,連接PC、PF,當△PCF的面積最大時,點M是過P垂直于x軸的直線l上一點,點N是拋物線對稱軸上一點,求FM+MN+NO的最小值;
(3)如圖2,過點D作DI⊥DG交x軸于點I,將△GDI沿射線GB方向平移至△G′D′I′處,將△G′D′I′繞點D′逆時針旋轉α(0<α<180°),當旋轉到一定度數(shù)時,點G′會與點I重合,記旋轉過程中的△G′D′I′為△G″D′I″,若在整個旋轉過程中,直線G″I″分別交x軸和直線GD′于點K、L兩點,是否存在這樣的K、L,使△GKL為以∠LGK為底角的等腰三角形?若存在,求此時GL的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線表達式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形.求平行四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)在(2)條件下,是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標;
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣2mx+m+4與y軸交于點A(0,3),與x軸交于點B,C(點B在點C左側).
(1)求該拋物線的表達式及點B,C的坐標;
(2)拋物線的對稱軸與x軸交于點D,若直線y=kx+b經(jīng)過點D和點E(﹣1,﹣2),求直線DE的表達式;
(3)在(2)的條件下,已知點P(t,0),過點P作垂直于x軸的直線交拋物線于點M,交直線DE于點N,若點M和點N中至少有一個點在x軸下方,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,的頂點都在正方形(每個小正方形邊長為單位1)網(wǎng)格的格點上.
(1)的形狀是 (直接寫答案)
(2)畫出沿軸翻折后的;
(3)畫出繞點順時針旋轉的并求出旋轉過程中掃過的面積.(結果保留)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com