【題目】某校在基地參加社會活動中,帶隊老師考問學(xué)生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留有一個寬為3米的出入口,如圖所示.如何設(shè)計才能使園地的面積最大?下面是兩位同學(xué)爭議的情境:小軍:把它圍成一個正方形,這樣的面積一定最大.小英:不對啦!面積最大的不是正方形.請根據(jù)上面信息,解決問題:
(1)設(shè)米().
① 米(用含的代數(shù)式表示);
②的取值范圍是 ;
(2)請你判斷誰的說法正確,為什么?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點為的中點,交于點,連接,下列結(jié)論:
①;
②;
③;
④若,則.
其中正確的結(jié)論是______________.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點.
(1)求反比例函數(shù)的表達(dá)式和點B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點,過點P作y軸的平行線,交直線AB于點C,連接PO,若△POC的面積為3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知PA=2,PB=4,以AB為邊作等邊△ABC,使P、C落在直線AB的兩側(cè),連接PC.
(1)如圖,當(dāng)∠APB=30°時,
①按要求補全圖形;②求AB和PC的長.
(2)當(dāng)∠APB變化時,其它條件不變,則PC的最大值為 ,此時∠APB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)各街道居民積極響應(yīng)“創(chuàng)文明社區(qū)”活動,據(jù)了解,某街道居民人口共有7.5萬人,街道劃分為A,B兩個社區(qū),B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍.
(1)求A社區(qū)居民人口至少有多少萬人?
(2)街道工作人員調(diào)查A,B兩個社區(qū)居民對“社會主義核心價值觀”知曉情況發(fā)現(xiàn):A社區(qū)有1.2萬人知曉,B社區(qū)有1萬人知曉,為了提高知曉率,街道工作人員用了兩個月的時間加強(qiáng)宣傳,A社區(qū)的知曉人數(shù)平均月增長率為m%,B社區(qū)的知曉人數(shù)第一個月增長了m%,第二個月增長了2m%,兩個月后,街道居民的知曉率達(dá)到76%,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點E,F分別是邊AB,BC上的動點(不與端點重合),且始終保持AE=BF,連接AF,CE相交于點P過點A作直線m∥BC,過點C作直線n∥AB,直線m,n相交于點D,連接PD交AC于點G,在點E,F的運動過程中,若=,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時,可以通過閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣2,2)、B(﹣4,0)、C(﹣1,0).
(1)請直接寫出點A關(guān)于y軸對稱的點D的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點O順時針旋轉(zhuǎn)90°得到△A1B1C1,請畫出△A1B1C1并求點A在這一旋轉(zhuǎn)中經(jīng)過的路程.
(3)將△ABC以點C為位似中心,放大2倍得到△A2B2C,請寫出一個點A2的坐標(biāo)并畫出△A2B2C.(所畫圖形必須在所給的網(wǎng)格內(nèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2mx+m2﹣3(m是常數(shù)).
(1)證明:無論m取什么實數(shù),該拋物線與x軸都有兩個交點;
(2)設(shè)拋物線的頂點為A,與x軸兩個交點分別為B,D,B在D的右側(cè),與y軸的交點為C.
①求證:當(dāng)m取不同值時,△ABD都是等邊三角形;
②當(dāng)|m|≤,m≠0時,△ABC的面積是否有最大值,如果有,請求出最大值,如果沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com