【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,FAB的中點,DEAB交于點GEFAC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:

EFAC; ②四邊形ADFE為菱形; ③AD=4AG; ④FH=BD

其中正確的結(jié)論有( ).

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

【答案】C

【解析】∵△ACE是等邊三角形,∴∠EAC=60°,AE=AC.

∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC.

FAB的中點,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,

∴∠AEF=∠BAC=30°,∴EFAC,故①正確,

EFAC,∠ACB=90°,∴HFBC.

FAB的中點, .

AB=BD, ,故④說法正確;

AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°.

∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF.

EFAC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF.

FE=AB,∴四邊形ADFE為平行四邊形.

AEEF,∴四邊形ADFE不是菱形;故②說法不正確;

∵四邊形ADFE為平行四邊形,

.

AD=AB,∴AD=4AG,故③說法正確,

所以正確的有:①③④.故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知∠1:∠2:∠3=236,且∠3比∠160°,則∠2=

A.10°B.60°C.45°D.80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調(diào)查(每位同學只選最關注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學生共有多少名?

(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).

(3)如果要在這5個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DEBCD,交ABEFDE上,并且AF=CE

1)求證:四邊形ACEF是平行四邊形;

2)當∠B滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2x+2x軸交于A、B兩點,與y軸交于點C

1)求點A,B,C的坐標;

2)點E是此拋物線上的點,點F是其對稱軸上的點,求以AB,EF為頂點的平行四邊形的面積;

3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】可以把三角形分成兩個面積相等的三角形的是(  )

A. 三角形的中線 B. 三角形的高線 C. 三角形的角平分線 D. 三角形一邊的垂線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,(1)如果∠1=__________,那么DEAC;(同位角相等,兩直線平行)

(2)如果∠1=__________,那么EFBC;(內(nèi)錯角相等,兩直線平行);

(3)如果DEF+__________=180°,那么DEAC;(同旁內(nèi)角互補,兩直線平行);

(4)如果∠2+__________=180°,那么ABDF;(同旁內(nèi)角互補,兩直線平行)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+cA,B,C三點,點A的坐標是30,點C的坐標是0,-3,動點P在拋物線上.

1b =_________,c =_________,點B的坐標為_____________;(直接填寫結(jié)果)

(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;

(3)過動點PPE垂直y軸于點E,交直線AC于點D,過點Dx軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列多項式中,能分解因式的是( 。
A.a2+b2
B.﹣a2﹣b2
C.a2﹣4a+4
D.a2+ab+b2

查看答案和解析>>

同步練習冊答案