【題目】準備一張矩形紙片,按如圖操作:將ABE沿BE翻折,使點A落在對角線BD上的M點,將CDF沿DF翻折,使點C落在對角線BD上的N點.

1)求證:四邊形BFDE是平行四邊形.

2)若四邊形BFDE是菱形,BE =2,求菱形BFDE的面積.

【答案】(1)見解析;(2)2

【解析】分析:1)根據(jù)矩形的性質(zhì)和翻折變換的性質(zhì)得到∠EBD=FDB證明EBDF,根據(jù)平行四邊形的判定定理證明結(jié)論

2)根據(jù)菱形的性質(zhì)和翻折變換的性質(zhì)求出∠ABE=30°,根據(jù)直角三角形的性質(zhì)求出AB=,根據(jù)菱形的面積公式計算即可.

詳解:(1∵四邊形ABCD是矩形∴∠A=C=90°,AB=CD,ABCD∴∠ABD=CDB,由翻折變換的性質(zhì)可知,ABE=EBD,CDF=FDB,∴∠EBD=FDB,EBDF

EDBF,∴四邊形BFDE為平行四邊形

2∵四邊形BFDE為菱形,∴∠EBD=FBD

∵∠EBD=ABE,∴∠EBD=FBD=ABE

∵四邊形ABCD是矩形ABC=90°,∴∠EBD=FBD=ABE=30°,AB=∴菱形BFDE的面積S=DE×AB=2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點A,B的坐標分別為A(a,0),B(n,0)且a、n滿足|a+2|+=0,現(xiàn)同時將點A,B分別向上平移4個單位,再向右平移3個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD.

(1)求點C,D的坐標及四邊形OBDC的面積;

(2)如圖2,若 P是線段BD上的一個動點,連接PC,PO,當點PBD上移動時(不與B,D重合)的值是否發(fā)生變化,并說明理由.

(3)在四邊形OBDC內(nèi)是否存在一點P,連接PO,PB,PC,PD,使SPCD=SPBD; SPOB:SPOC=1?若存在這樣一點,求出點P的坐標,若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)要求回答問題

(1)如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①當點D在AC上時,如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?直接寫出你猜想的結(jié)論;
②將圖1中的△ADE繞點A順時針旋轉(zhuǎn)α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由.

(2)當△ABC和△ADE滿足下面甲、乙、丙中的哪個條件時,使線段BD、CE在(1)中的位置關(guān)系仍然成立?不必說明理由.
甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;
乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;
丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC的三個頂點的坐標分別為A﹣5,0)、B﹣2,3)、C﹣1,0

(1)畫出ABC關(guān)于坐標原點O成中心對稱的A1B1C1;

(2)ABC繞坐標原點O順時針旋轉(zhuǎn)90°,畫出對應(yīng)的A′B′C′,

(3)若以A′、B′C′、D′為頂點的四邊形為平行四邊形,請直接寫出在第四象限中的D′坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生孝敬父母的情況(選項:A為父母洗一次腳;B幫父母做一次家務(wù);C給父母買一件禮物;D其它),在全校范圍內(nèi)隨機抽取了若干名學生進行調(diào)查,得到如下圖表(部分信息未給出)

根據(jù)以上信息解答下列問題:

1)這次被調(diào)查的學生有多少人?

2)求表中m,n,p的值,并補全條形統(tǒng)計圖.

3)該校有1600名學生,估計該校全體學生中選擇B選項的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在數(shù)軸上點表示數(shù),點表示數(shù),且、滿足

表示的數(shù)為________;點表示的數(shù)為________

若點與點之間的距離表示為,點與點之間的距離表示為,請在數(shù)軸上找一點,使,則點表示的數(shù)________

若在原點處放一擋板,一小球甲從點處以個單位/秒的速度向左運動;同時另一小球乙從點處以個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為(秒),請分別表示出甲、乙兩小球到原點的距離(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=,OC=,則另一直角邊BC的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動點A從原點出發(fā)向數(shù)軸負方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,運動到3秒鐘時,兩點相距15個單位長度.已知動點A、B的運動速度比之是3:2(速度單位:1個單位長度/秒).

(1)求兩個動點運動的速度;

(2)A、B兩點運動到3秒時停止運動,請在數(shù)軸上標出此時A、B兩點的位置;

(3)若A、B兩點分別從(2)中標出的位置再次同時開始在數(shù)軸上運動,運動的速度不變,運動的方向不限,問:經(jīng)過幾秒鐘,A、B兩點之間相距4個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:

1作出ABC繞點A逆時針旋轉(zhuǎn)90°AB1C1

2作出ABC關(guān)于原點O成中心對稱的A1B2C2

3)請直接寫出以A1、B2C2為頂點的平行四邊形的第四個頂點D的坐標________.

查看答案和解析>>

同步練習冊答案