【題目】某商店計(jì)劃采購甲、乙兩種不同型號的平板電腦共20臺,已知甲型平板電腦進(jìn)價1600元,售價2000元;乙型平板電腦進(jìn)價為2500元,售價3000元.

1)設(shè)該商店購進(jìn)甲型平板電腦x臺,請寫出全部售出后該商店獲利yx之間函數(shù)表達(dá)式.

2)若該商店采購兩種平板電腦的總費(fèi)用不超過39200元,全部售出所獲利潤不低于8500元,請?jiān)O(shè)計(jì)出所有采購方案,并求出使商店獲得最大利潤的采購方案及最大利潤.

【答案】1y=-100x+10000;(2)共有四種采購方案:①甲型電腦12臺,乙型電腦8臺,②甲型電腦13臺,乙型電腦7臺,③甲型電腦14,乙型電腦6臺,④甲型電腦15臺,乙型電腦5臺,采購甲型電腦12臺,乙型電腦8臺時商店獲得最大利潤,最大利潤是8800.

【解析】

(1)根據(jù)利潤等于每臺電腦的利潤乘以臺數(shù)列得函數(shù)關(guān)系式即可;

(2)根據(jù)題意列不等式組,求出解集,根據(jù)解集即可得到四種采購方案,由(1)的函數(shù)關(guān)系式得到當(dāng)x取最小值時,y有最大值,將x=12代入函數(shù)解析式求出結(jié)果即可.

1)由題意得:y=2000-1600x+3000-2500)(20-x=-100x+10000,

∴全部售出后該商店獲利yx之間函數(shù)表達(dá)式為y=-100x+10000

2)由題意得: ,

解得,

x為正整數(shù),

x=12、1314、15,

共有四種采購方案:

①甲型電腦12臺,乙型電腦8臺,

②甲型電腦13臺,乙型電腦7臺,

③甲型電腦14,乙型電腦6臺,

④甲型電腦15臺,乙型電腦5臺,

y=-100x+10000,且-100<0,

yx的增大而減小,

∴當(dāng)x取最小值時,y有最大值,

x=12時,y最大值=,

∴采購甲型電腦12臺,乙型電腦8臺時商店獲得最大利潤,最大利潤是8800.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會實(shí)踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強(qiáng):如果每千克的利潤為3元,那么每天可售出250千克.

小紅:如果以13/千克的價格銷售,那么每天可獲取利潤750元.

【利潤=(銷售價-進(jìn)價)銷售量】

1)請根據(jù)他們的對話填寫下表:

銷售單價x(元/kg

10

11

13

銷售量ykg




2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求Wx的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計(jì)劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實(shí)施后,實(shí)際每年綠化面積是原計(jì)劃的1.6倍,這樣可提前4年完成任務(wù).

(1)問實(shí)際每年綠化面積多少萬平方米?

(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實(shí)際平均每年綠化面積至少還要增加多少萬平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一臺實(shí)物投影儀,圖2是它的示意圖,折線OABC表示支架,支架的一部分OAB是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AOOM,垂足為點(diǎn)O,且AO7cm,∠BAO160°,BCOM,CD8cm

將圖2中的BC繞點(diǎn)B向下旋轉(zhuǎn)45°,使得BCD落在BCD′的位置(如圖3所示),此時CD′⊥OM,AD′∥OMAD′=16cm,求點(diǎn)B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20201月份,某藥店計(jì)劃購進(jìn)一批甲、乙兩種型號的口罩,已知一袋甲種口罩的進(jìn)價與一袋乙種口罩的進(jìn)價和為40元,用90元購進(jìn)甲種口罩的袋數(shù)與用150元購進(jìn)乙種口罩的袋數(shù)相同.求每袋甲種、乙種口罩的進(jìn)價分別是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù)且)的圖象相交于,兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式;

2)將一次函數(shù)的圖象沿軸向下平移個單位,使平移后的圖象與反比例函數(shù)的圖象有且只有一個交點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過課本上對函數(shù)的學(xué)習(xí),我們積累了一定的經(jīng)驗(yàn),下表是一個函數(shù)的自變量與函數(shù)值的部分對應(yīng)值,請你借鑒以往學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),探究下列問題:

0

1

2

3

4

5

6

3

2

1.5

1.2

1

1)當(dāng) 時,;

2)根據(jù)表中數(shù)值描點(diǎn),并畫出函數(shù)圖象;

3)觀察畫出的圖象,寫出這個函數(shù)的一條性質(zhì):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知,,點(diǎn)P是邊BC上一動點(diǎn)(點(diǎn)P不與點(diǎn)BC重合),連接AP,作點(diǎn)B關(guān)于直線AP的對稱點(diǎn)M,連接MP,作的角平分線交邊CD于點(diǎn)N.則線段MN的最小值為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)衢州市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,衢州市近5年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。

請根據(jù)圖中信息,解答下列問題:

(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);

(2)2016年比2015年的國民生產(chǎn)總值增加了百分之幾(精確到1%)?

(3)若要使2018年的國民生產(chǎn)總值達(dá)到1573億元,求2016年至2018年我市國民生產(chǎn)總值平均年增長率(精確到1%)。

查看答案和解析>>

同步練習(xí)冊答案