【題目】圖中的兩個多邊形ABCDEF和A1B1C1D1E1F1相似(各字母已按對應關系排列),∠A=∠D1=135°,∠B=∠E1=120°,∠C1=95°.
(1)求∠F的度數;
(2)如果多邊形ABCDEF和A1B1C1D1E1F1的相似比是1:1.5,且CD=15cm,求C1D1的長度.
【答案】 (1)∠F=115°;(2)C1D1=22.5cm.
【解析】試題分析:(1)、根據相似多邊形的性質求出∠A、∠B、∠C、∠D、∠E的角度,然后根據五邊形的內角和定理求出∠F的度數;(2)、相似多邊形對應邊的比值等于相似比,根據相似比求出線段的長度.
試題解析:(1)∵多邊形ABCDEF和A1B1C1D1E1F1相似,∠A=∠D1=135°,∠B=∠E1=120°,∠C1=95°,
∴∠C=∠C1=95°,∠D=∠D1=135°,∠E=∠E1=120°.
由多邊形內角和定理,得多邊形ABCDEF的內角和為180°×(6-2)=720°,
∴∠F=720°-(135°+120°+95°+135°+120°)=115°;
(2)∵多邊形ABCDEF和A1B1C1D1E1F1的相似比是1:1.5,且CD=15cm,
∴C1D1=15×1.5=22.5(cm).
科目:初中數學 來源: 題型:
【題目】探索規(guī)律:觀察下面由※組成的圖案和算式,解答問題:
1+3=22=4
1+3+5=32=9
1+3+5+7=42=16
1+3+5+7+9=52=25
(1)猜想1+3+5+7+9+…+29= = ;
(2)猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)= = ;
(3)用上述規(guī)律計算:41+43+45+…+77+79.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】春天到了,鮮花盛開,人們都喜歡用美麗的花朵裝點家庭,北碚花市生意興隆,某花店老板三月份購進一批山茶花、繡球花共1000株,進價均為每株42元,山茶花以每株80元、繡球花以每株64元的價格銷售.
(1)若要求三月份的總獲利至少33200元,問該老板至少應購進山茶花多少株?
(2)四月份繡球花品種豐富、花型飽滿,在進價不變的情況下,該老板決定調整價格,將山茶花的價格在三月份的基礎上下調a%(降價后售價不低于進價),繡球花的價格上調a%,同時山茶花的銷量較三月份最低利潤時銷量下降了a%,繡球花的銷量較月份最低利潤時銷量上升了40%,結果四月份的銷售額比三月份最低利潤時增加了3520元,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A、D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調查,統(tǒng)計整理并繪制了如圖兩幅不完整的統(tǒng)計圖:
請根據以上統(tǒng)計圖提供的信息,解答下列問題:
(1)共抽取___名學生進行問卷調查;
(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“籃球”所對應的圓心角的度數;
(3)該校共有2500名學生,請估計全校學生喜歡足球運動的人數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數的圖象交于點A(1,6),B(3,n)兩點.
(1)求一次函數的表達式;
(2)在y軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.動點M從點B出發(fā),在BA邊上以每秒3cm的速度向定點A運動,同時動點N從點C出發(fā),在CB邊上以每秒2cm的速度向點B運動,運動時間為t秒,連接MN.
(1)若△BMN與△ABC相似,求t的值;
(2)連接AN,CM,若AN⊥CM,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O分別交AB、BC于點M、N,直線CP是⊙O的切線,且點P在AB的延長線上.
(1)若∠P=40°,求∠BCP的度數;
(2)若BC=2,sin∠BCP=,求點B到AC的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明和幾位同學做手的影子游戲時,發(fā)現對于同一物體,影子的大小與光源到物體的距離有關.因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .
(2)不改變①中燈泡的高度,將兩個邊長為30cm的正方形框架按圖②擺放,請計算此時橫向影子A′B,D′C的長度和為多少?
(3)有n個邊長為a的正方形按圖③擺放,測得橫向影子A′B,D′C的長度和為b,求燈泡離地面的距離.(寫出解題過程,結果用含a,b,n的代數式表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com