【題目】小明和小莉在跑道上進(jìn)行100 m短跑比賽,兩人從出發(fā)點(diǎn)同時(shí)起跑,小明到達(dá)終點(diǎn)時(shí),小莉離終點(diǎn)還差6 m,已知小明和小莉的平均速度分別為x m/s、y m/s.
(1)如果兩人重新開(kāi)始比賽,小明從起點(diǎn)向后退6 m,兩人同時(shí)起跑能否同時(shí)到達(dá)終點(diǎn)?若能,請(qǐng)求出兩人到達(dá)終點(diǎn)的時(shí)間;若不能,請(qǐng)說(shuō)明誰(shuí)先到達(dá)終點(diǎn).
(2)如果兩人想同時(shí)到達(dá)終點(diǎn),應(yīng)如何安排兩人起跑位置?請(qǐng)?jiān)O(shè)計(jì)兩種方案.
【答案】(1)小明先到達(dá)終點(diǎn).(2)方案一:小明在起點(diǎn),小莉在起點(diǎn)前6米處,兩人同時(shí)起跑,同時(shí)到達(dá);方案二:小莉在起點(diǎn),小明在起點(diǎn)后米處,兩人同時(shí)起跑,同時(shí)到達(dá).
【解析】試題分析:(1)首先得出兩人之間的速度之間關(guān)系,進(jìn)而利用小明從起點(diǎn)向后退6m,得出兩人的速度差,求出即可;
(2)利用兩人的速度關(guān)系得出符合題意的方案.
試題解析:(1)根據(jù)題意,得,則y= .
因?yàn)?/span>,
所以
所以小明先到達(dá)終點(diǎn).
(2)方案一:小明在起點(diǎn),小莉在起點(diǎn)前6米處,兩人同時(shí)起跑,同時(shí)到達(dá);
方案二:設(shè)小莉在起點(diǎn),小明在起點(diǎn)后a米處,兩人同時(shí)起跑,同時(shí)到達(dá).
則,
即,
解得a=.
所以小莉在起點(diǎn),小明在起點(diǎn)后米處,兩人同時(shí)起跑,同時(shí)到達(dá).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)連續(xù)的偶數(shù)2,4,6,8,…排成如圖的形式.若將圖中的十字框上下左右移動(dòng),框住的五個(gè)數(shù)之和能等于2020嗎?若能,請(qǐng)寫(xiě)出這五個(gè)數(shù)中位置在最中間的數(shù);若不能,請(qǐng)說(shuō)明理由.你的答案是:____________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(0,2),在x軸上取一點(diǎn)B,連接AB,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交OA、AB于點(diǎn)M、N,再以M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)D,連接AD并延長(zhǎng)交x軸于點(diǎn)P.若△OPA與△OAB相似,則點(diǎn)P的坐標(biāo)為( 。
A. (1,0)B. (,0)C. (,0)D. (2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.
(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對(duì)角線的交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過(guò)程中可形成什么圖形?
(4)如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部)移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說(shuō)理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自行車廠一周計(jì)劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn) 輛;
(2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;
(3)該廠實(shí)行計(jì)劃工資制,每輛車元,超額完成任務(wù)每輛獎(jiǎng)元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)請(qǐng)根據(jù)下列計(jì)算,把解題過(guò)程補(bǔ)充完整,并把解題過(guò)程中用到的運(yùn)算律寫(xiě)在題后的橫線上:
①
解:原式
.
運(yùn)算律: .
②.
解:原式
)(
運(yùn)算律: .
(2)計(jì)算下列各題:
①
②
③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.
(1)如圖①,點(diǎn)A是FG的中點(diǎn),FG∥BC,將矩形DEFG向下平移,直到DE與BC重合為止.要研究矩形DEFG與△ABC重疊部分的面積,就要進(jìn)行分類討論,你認(rèn)為如何進(jìn)行分類,寫(xiě)出你的分類方法(無(wú)需求重疊部分的面積).
(2)如圖②,點(diǎn)B與F重合,E、B、C在同一直線上,將矩形DEFG向右平移,直到點(diǎn)E與C重合為止.設(shè)矩形DEFG與△ABC重疊部分的面積為y,平移的距離為x.
① 求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
② 在給定的平面直角坐標(biāo)系中畫(huà)出y與x的大致圖象,并在圖象上標(biāo)注出關(guān)鍵點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為、,點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC邊上運(yùn)動(dòng),當(dāng)是等腰三角形時(shí),點(diǎn)Р的坐標(biāo)為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;
(2)平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2 ;
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com