【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為:
②BC,CD,CF之間的數(shù)量關(guān)系為:;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.

(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),延長BA交CF于點(diǎn)G,連接GE.若已知AB=2 ,CD= BC,請(qǐng)求出GE的長.

【答案】
(1)垂直;BC=CD+CF
(2)

解:CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.

∵正方形ADEF中,AD=AF,

∵∠BAC=∠DAF=90°,

∴∠BAD=∠CAF,

在△DAB與△FAC中, ,

∴△DAB≌△FAC,

∴∠ABD=∠ACF,

∵∠BAC=90°,AB=AC,

∴∠ACB=∠ABC=45°.

∴∠ABD=180°﹣45°=135°,

∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,

∴CF⊥BC.

∵CD=DB+BC,DB=CF,

∴CD=CF+BC.


(3)

解:過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,

∵∠BAC=90°,AB=AC,

∴BC= AB=4,AH= BC=2,

∴CD= BC=1,CH= BC=2,

∴DH=3,

由(2)證得BC⊥CF,CF=BD=5,

∵四邊形ADEF是正方形,

∴AD=DE,∠ADE=90°,

∵BC⊥CF,EM⊥BD,EN⊥CF,

∴四邊形CMEN是矩形,

∴NE=CM,EM=CN,

∵∠AHD=∠ADE=∠EMD=90°,

∴∠ADH+∠EDM=∠EDM+∠DEM=90°,

∴∠ADH=∠DEM,

在△ADH與△DEM中, ,

∴△ADH≌△DEM,

∴EM=DH=3,DM=AH=2,

∴CN=EM=3,EN=CM=3,

∵∠ABC=45°,

∴∠BGC=45°,

∴△BCG是等腰直角三角形,

∴CG=BC=4,

∴GN=1,

∴EG= =


【解析】解:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB與△FAC中, ,
∴△DAB≌△FAC,
∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即BC⊥CF;
故答案為:垂直;②△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD;
故答案為:BC=CF+CD;
(1)①根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結(jié)論;(2)根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)以及等腰直角三角形的角的性質(zhì)可得到結(jié)論.(3)根據(jù)等腰直角三角形的性質(zhì)得到BC= AB=4,AH= BC=2,求得DH=3,根據(jù)正方形的性質(zhì)得到AD=DE,∠ADE=90°,根據(jù)矩形的性質(zhì)得到NE=CM,EM=CN,由角的性質(zhì)得到∠ADH=∠DEM,根據(jù)全等三角形的性質(zhì)得到EM=DH=3,DM=AH=2,等量代換得到CN=EM=3,EN=CM=3,根據(jù)等腰直角三角形的性質(zhì)得到CG=BC=4,根據(jù)勾股定理即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題: A、B兩地的距離是80公里,一輛公共汽車從A地駛出3小時(shí)后,一輛小汽車也從A地出發(fā),它的速度是公共汽車的3倍,已知小汽車比公共汽車遲20分鐘到達(dá)B地,求兩車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,∠A=90°
(1)請(qǐng)用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明).
(2)若∠B=60°,AB=3,求⊙P的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF等于(
A.12.5°
B.15°
C.20°
D.22.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣2x經(jīng)過點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′在反比例函數(shù) (k≠0)的圖象上.

(1)求a的值;
(2)直接寫出點(diǎn)P′的坐標(biāo);
(3)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是一位同學(xué)所做的實(shí)數(shù)運(yùn)算解題過程的一部分. ﹣ ﹣|﹣1|2017﹣(π﹣3.14)0+4cos60°
=﹣ +1﹣1+4×
(1)指出上面解答過程中的錯(cuò)誤,并寫出正確的解答過程;
(2)若分式方程 +1= 的解與(1)中的最終結(jié)果相同,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2的等邊△OAB放置于平面直角坐標(biāo)系xOy中,C是AB邊上的一個(gè)點(diǎn)(不與端點(diǎn)A、B重合),作CD⊥OB于點(diǎn)D,若點(diǎn)C、D都在雙曲線y= 上(k>0,x>0),則k的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備購進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元;
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號(hào)的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與E重合),點(diǎn)B、C(E)、F在同一條直線上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)A出發(fā),以2cm/s的速度沿AB向點(diǎn)B勻速移動(dòng);當(dāng)點(diǎn)P移動(dòng)到點(diǎn)B時(shí),點(diǎn)P停止移動(dòng),△DEF也隨之停止移動(dòng).DE與AC交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s).
(1)用含t的代數(shù)式表示線段AP和AQ的長,并寫出t的取值范圍;
(2)連接PE,設(shè)四邊形APEQ的面積為y(cm2),試探究y的最大值;
(3)當(dāng)t為何值時(shí),△APQ是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案