【題目】某商場一品牌服裝,銷售一件可獲利元,為在十一期間增加盈利,進行促銷活動,決定采取降價措施.根據(jù)以往銷售經(jīng)驗及市場調(diào)查發(fā)現(xiàn),每件服裝降價(元)與每天的銷售量(件)之間的關(guān)系如下表
(元) | … | |||||
(件) | … |
請你按照上表,求與之間的函數(shù)解析式.
為保證每天能盈利元,又能吸引顧客,每件服裝應(yīng)降價多少元?
【答案】(1);(2)每件應(yīng)降低元時,商場每天盈利元.
【解析】
(1)一件服裝每降價1元,每天可多售出2件,則設(shè)每件降價x元時,銷售量為:20+2x,每件盈利:(40﹣x)元,所以每天盈利為:(40﹣x)(20+2x);
(2)此題首先根據(jù)盈利1200元,列出一元二次方程:(20+2×x)×(40﹣x)=1200,然后解出.要注意x=10應(yīng)舍去,要考慮符合實際的要求.
解(1)設(shè)每件降低x元,獲得的總利潤為y元,則y=(40﹣x)(20+2x)=﹣2x2+60x+800;
(2)當(dāng)y=1200元時,即﹣2x2+60x+800=1200,解得:x1=10,x2=20.
∵進行促銷活動,∴每件應(yīng)降低20元時,商場每天盈利1200元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,經(jīng)過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.
(1)求證:AE=AD.
(2)若AE=3,CD=4,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),點在該函數(shù)的圖象上,點到軸、軸的距離分別為、.設(shè),下列結(jié)論中:
①沒有最大值;②沒有最小值;③時,隨的增大而增大;
④滿足的點有四個.其中正確結(jié)論的個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)與x、y軸分別交于A、B兩點,與x、y軸交于C、D兩點.
(1)求A、B、C、D的坐標(biāo)(用含k、m的代數(shù)式表示);
(2)若,求的值;
(3)在(2)的前提下,若的面積為27,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)經(jīng)過點和點,交軸于,兩點,交軸于,則:①;②無論取何值,此二次函數(shù)圖象與軸必有兩個交點,函數(shù)圖象截軸所得的線段長度必大于;③當(dāng)函數(shù)在時,隨的增大而減。虎墚(dāng)時,;⑤若,則.以上說法正確的有( )
A. ①②③④⑤ B. ①②④⑤ C. ②③④ D. ①②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線.
當(dāng)拋物線的頂點在軸上時,求該拋物線的解析式;
不論取何值時,拋物線的頂點始終在一條直線上,求該直線的解析式;
若有兩點,且該拋物線與線段始終有交點,請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點,且點A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點M,在直線AB上有一點P,在雙曲線y=上有一點N,若以O(shè)、M、P、N為頂點的四邊形是有一組對角為60°的菱形,請寫出所有滿足條件的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點C,使AC=AB;
②作∠ABM 的角平分線交AC于D點;
③在射線CM上作一點E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com