【題目】甲、乙兩人從少年宮出發(fā),沿相同的路線分別以不同的速度勻速跑向體育館,甲先跑一段路程后,乙開始出發(fā),當乙超出甲150米時,乙停在此地等候甲,兩人相遇后乙又繼續(xù)以原來的速度跑向體育館.如圖是甲、乙兩人在跑步的全過程中經(jīng)過的路程y(米)與甲出發(fā)的時間x(秒)的函數(shù)圖象,則乙在途中等候甲用了(  )秒

A.200B.150C.100D.80

【答案】C

【解析】

首先求得C點的縱坐標,即a的值,則CD段的路程可以求得,時間是560500=60秒,則乙跑步的速度即可求得.

解:根據(jù)圖象可以得到:甲共跑了900米,用了600秒,則速度是:900÷6001.5/秒;

甲跑500秒時的路程是:500×1.5750米,則CD段的長是900750150米,

時間是:56050060秒,則速度是:150÷602.5/秒;

甲跑150米用的時間是:150÷1.5100秒,則甲比乙早出發(fā)100秒.

乙跑750米用的時間是:750÷2.5300秒,

則乙在途中等候甲用的時間是:500300100100秒.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=COD=50°,連接AC,BD

交于點M

的值為 ;②∠AMB的度數(shù)為 °

2)如圖2,在△OAB和△OCD中,∠AOB=COD=90°,∠OAB=OCD=30°,連接ACBD的延長線于點M.求的值及∠AMB的度數(shù);

3)在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),ACBD所在直線交于點M.若OD=,OB=,請直接寫出當點C與點M重合時AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點P是BA延長線上一點,PC是⊙O的切線,切點為C,過點B作BD⊥PC交PC的延長線于點D,連接BC.求證:

(1)∠PBC=∠CBD;

(2)=ABBD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一矩形OABC放在直角坐標系中,O為坐標原點,點Ay軸正半軸上,點E是邊AB上的一個動點不與點A、B重合,過點E的反比例函數(shù)的圖象與邊BC交于點F

的面積為,且,求k的值;

,,反比例函數(shù)的圖象與邊AB、邊BC交于點EF,當沿EF折疊,點B恰好落在OC上,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是對角線BD上一點,連接AE,將DED點逆時針方向旋轉(zhuǎn)90°到DF,連接BF,交DC于點G,若DG=3CG=2,則線段AE的長為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB為⊙O直徑,BC為⊙O切線,切點為BCO平行于弦AD,作直線DC

(1)求證:DC為⊙O切線;

(2) AD·OC=8,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠C90°AC2,BC2,點O是邊AB上的一個動點,以點O為圓心,OA為半徑作⊙O,與邊AC交于點M

1)如圖1,當⊙O經(jīng)過點C時,⊙O的直徑是   ;

2)如圖2,當⊙O與邊BC相切時,切點為點N,試求⊙OABC重合部分的面積;

3)如圖3,當⊙O與邊BC相交時,交點為E、F,設CMx,就判斷AEAF是否為定值,若是,求出這個定值;若不是,請用含x的代數(shù)式表示.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,DBC中點,AEBD,且AEBD

1)求證:四邊形AEBD是矩形;

2)連接CEAB于點F,若∠ABE30°,AE2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線軸相交于點,與軸相交于點,以點為圓心,線段的長為半徑畫弧,與直線位于第一象限的部分相交于點,則點的坐標為_______

查看答案和解析>>

同步練習冊答案