【題目】已知,求的最大值與最小值.
【答案】x+y最大值為6,最小值為-3.
【解析】
先將|x+2|+|1-x|=9-|y-5|-|1+y|化為|x+2|+|1-x|+|y-5|+|1+y|=9.再對x、y的取值進(jìn)行分類討論:當(dāng)x≥1,y≥5時;當(dāng)1>x≥-2,5>y≥-1時;當(dāng)x<-2,y<-1時.最后求出最大最小值.
|x+2|+|1-x|=9-|y-5|-|1+y|,
∴|x+2|+|1-x|+|y-5|+|1+y|=9,
當(dāng)x≥1,y≥5時,x+2+x-1+y-5+y+1=9,
2x+2y=12 即x+y=6,
當(dāng)1>x≥-2,5>y≥-1時,
x+2+1-x+5-y+y+1=9,但-3<x+y<6,
當(dāng)x<-2,y<-1時,
-x-2+1-x+5-y-1-y=9,
得-2x-2y=6即 x+y=-3,
故x+y最大值為6,最小值為-3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司經(jīng)銷甲種型號電腦,今年三月份的電腦售價比去年同期每臺降價1000元.如果賣出相同數(shù)量的電腦,去年的銷售額為10萬元,那么今年的銷售額只有8萬元.
(1)今年三月份甲種型號電腦每臺的售價為多少元?
(2)為增加收入,電腦公司決定經(jīng)銷乙種型號電腦.已知甲種型號電腦每臺的進(jìn)價為3500元,乙種型號電腦每臺的進(jìn)價為3000元,公司預(yù)計用不多于5萬元且不少于4.8萬元的資金購進(jìn)這兩種型號的電腦共15臺,則有幾種進(jìn)貨方案?
(3)如果乙種型號電腦每臺的售價為3800元,為打開乙種型號電腦的銷路,公司決定每售出一臺乙種型號電腦,返還顧客現(xiàn)金元,要使(2)中所有方案的獲利相同,那么的值應(yīng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=4,BC=6,∠ABC=60°,點(diǎn)P為ABCD內(nèi)一點(diǎn),點(diǎn)Q在BC邊上,則PA+PD+PQ的最小值為( )
A.B.6+2C.5D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家裝公司聘請兩隊搬運(yùn)工來搬運(yùn)貨物,他們都只能連續(xù)搬運(yùn)5小時,甲隊于某日0時開始搬運(yùn),過了1小時,乙隊也開始搬運(yùn),如圖,線段OG表示甲隊搬運(yùn)量y(千克)與時間x(時)的函數(shù)圖象,線段EF表示乙隊搬運(yùn)量y(千克)與時間x(時)的函數(shù)圖象.
(1)求乙隊搬運(yùn)量y與時間x之間的函數(shù)關(guān)系式.
(2)如果甲、乙兩隊各連續(xù)搬運(yùn)5小時,那么乙隊比甲隊多搬運(yùn)多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,拋物線y=x2﹣2mx+m2+m的頂點(diǎn)為A,與y軸交于點(diǎn)B.當(dāng)拋物線不經(jīng)過坐標(biāo)原點(diǎn)時,分別作點(diǎn)A、B關(guān)于原點(diǎn)的對稱點(diǎn)C、D,連結(jié)AB、BC、CD、DA.
(1)分別用含有m的代數(shù)式表示點(diǎn)A、B的坐標(biāo).
(2)判斷點(diǎn)B能否落在y軸負(fù)半軸上,并說明理由.
(3)連結(jié)AC,設(shè)l=AC+BD,求l與m之間的函數(shù)關(guān)系式.
(4)過點(diǎn)A作y軸的垂線,交y軸于點(diǎn)P,以AP為邊作正方形APMN,MN在AP上方,如圖②,當(dāng)正方形APMN與四邊形ABCD重疊部分圖形為四邊形時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點(diǎn),M是BC邊上的動點(diǎn)(點(diǎn)M不與點(diǎn)B,C重合),過點(diǎn)C作CN⊥DM交AB于點(diǎn)N,連結(jié)OM、ON,MN.下列五個結(jié)論:①△CNB≌△DMC;②ON=OM;③ON⊥OM;④若AB=2,則S△OMN的最小值是1;⑤AN2+CM2=MN2.其中正確結(jié)論是_____;(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),OP是∠MON的平分線,請你利用該圖形畫一對以O(shè)P所在直線為對稱軸的全等三角形.請你參考這個作全等三角形的方法,解答下列問題:
(1)如圖(2),在△ABC中,∠ACB是直角,∠B=60°, AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F.請你判斷并寫出FE與FD之間的數(shù)量關(guān)系;
(2)如圖(3),在△ABC中,如果∠ACB不是直角,而(1)中的其他條件不變,在(1)中所得結(jié)論是否仍然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)(﹣7.3)+5
(2)3﹣(﹣5)
(3)
(4)(﹣12)÷(﹣)
(5)4.7﹣(﹣8.9)﹣7.5+(﹣6)
(6)﹣3.5÷×|﹣|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com