【題目】如圖,的直徑,、上的點(diǎn),若,若平分,則長(zhǎng)為(

A.10B.7C.D.

【答案】D

【解析】

DFCA,垂足FCA的延長(zhǎng)線上,作DGCB于點(diǎn)G,連接DA,DB.由RtAFDRtBGDHL),推出AF=BG,由RtCDFRtCDGHL),推出CF=CG,由CDF是等腰直角三角形,得CD=CF,求出CF即可解決問(wèn)題.

DFCA,垂足FCA的延長(zhǎng)線上,作DGCB于點(diǎn)G,連接DA,DB

∵∠AFD=BGD=90°,

RtADFRtBDG

,

RtAFDRtBGDHL),

AF=BG

同理:RtCDFRtCDGHL),

CF=CG

AB是直徑,

∴∠ACB=90°,

AC=6BC=8,

AB=,

6+AF=8-AF,

AF=1

CF=7,

CD平分∠ACB,

∴∠ACD=45°,

∵△CDF是等腰直角三角形,

CD=CF=7

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC5,以AB為一邊向三角形外作正方形ABEF,正方形的中心為O ,則BC邊的長(zhǎng)為_

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個(gè)三角形先沿著x軸翻折,再向右平移2個(gè)單位稱為1次變換.如圖已知等邊三角形ABC的頂點(diǎn)B、C的坐標(biāo)分別是(﹣1,﹣1)、(﹣3,﹣1),ABC經(jīng)過(guò)連續(xù)9次這樣的變換得到ABC′,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:

身高情況分組表(單位:cm)

組別

身高

A

x<155

B

155≤x<160

C

160≤x<165

D

165≤x<170

E

x≥170

根據(jù)圖表提供的信息,回答下列問(wèn)題:

(1)樣本中,男生的身高眾數(shù)在   組,中位數(shù)在   組;

(2)樣本中,女生身高在E組的人數(shù)有   人;

(3)已知該校共有男生400人,女生380人,請(qǐng)估計(jì)身高在160≤x<170之間的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝改革開(kāi)放40周年,深圳舉辦了燈光秀,某數(shù)學(xué)興趣小組為測(cè)量“平安金融中心”AB的高度,他們?cè)诘孛?/span>C處測(cè)得另一幢大廈DE的頂部E處的仰角∠ECD=32°.登上大廈DE的頂部E處后,測(cè)得“平安中心”AB的頂部A處的仰角為60°,(如圖).已知C、D、B三點(diǎn)在同一水平直線上,且CD=400米,DB=200米.

1)求大廈DE的高度;

2)求平安金融中心AB的高度.

(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,1.411.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是【 】

A.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則甲組數(shù)據(jù)比乙組數(shù)據(jù)大

B.從1,2,3,4,5,中隨機(jī)抽取一個(gè)數(shù),是偶數(shù)的可能性比較大

C.?dāng)?shù)據(jù)3,5,4,1,﹣2的中位數(shù)是3

D.若某種游戲活動(dòng)的中獎(jiǎng)率是30%,則參加這種活動(dòng)10次必有3次中獎(jiǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位的方格紙中,它的頂點(diǎn)在小正方形頂點(diǎn)位置,其中點(diǎn)、、也是小正方形的頂點(diǎn),那么與相似的是(

A.以點(diǎn)為頂點(diǎn)的三角形;

B.以點(diǎn)、為頂點(diǎn)的三角形

C.以點(diǎn)、、為頂點(diǎn)的三角形

D.以點(diǎn)、為頂點(diǎn)的三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AD4,AB2.點(diǎn)EAB的中點(diǎn),點(diǎn)FBC邊上的任意一點(diǎn)(不與BC重合),△EBF沿EF翻折,點(diǎn)B落在B'處,當(dāng)DB'的長(zhǎng)度最小時(shí),BF的長(zhǎng)度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰梯形ABCD中,ADBC,AD=3,BC=7,∠B=60°,P為下底BC上一點(diǎn)(不與BC重合),連結(jié)AP,過(guò)點(diǎn)PPECDE,使得∠APE=B

1)求證:△ABP∽△PCE

2)在底邊BC上是否存在一點(diǎn)P,使DEEC=53?如果存在,求BP的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案