【題目】已知a,b,c是三角形的三邊,那么代數(shù)式(a﹣b)2﹣c2的值(
A.大于零
B.小于零
C.等于零
D.不能確定

【答案】B
【解析】解:∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),a,b,c是三角形的三邊, ∴a+c﹣b>0,a﹣b﹣c<0,
∴(a﹣b)2﹣c2的值是負(fù)數(shù).
故選:B.
首先利用平方差公式分解因式,進(jìn)而利用三角形三邊關(guān)系得出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC與△CDE都是等邊三角形,且∠EBD=65°,則∠AEB的度數(shù)是( )
A.115°
B.120°
C.125°
D.130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若AB=3,AD=9,求△BDE的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸是直線,與軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)軸于點(diǎn),交直線于點(diǎn).

(1)求拋物線解析式;

(2)若點(diǎn)在第一象限內(nèi),當(dāng)時(shí),求四邊形的面積;

(3)在(2)的條件下,若點(diǎn)為直線上一點(diǎn),點(diǎn)為平面直角坐標(biāo)系內(nèi)一點(diǎn),是否存在這樣的點(diǎn)和點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形是菱形?若存在上,直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

【溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便探究】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地. 如圖,線段OA表示貨車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,折線BCDE表轎車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系.請根據(jù)圖象,解答下列問題:

(1)線段CD表示轎車在途中停留了h;
(2)貨車的平均速度是km/h;
(3)求線段DE對應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在世界環(huán)境日到來之際,希望中學(xué)開展了“環(huán)境與人類生存”主題研討活動(dòng),活動(dòng)之一是對我們的生存環(huán)境進(jìn)行社會調(diào)查,并對學(xué)生的調(diào)查報(bào)告進(jìn)行評比.初三.(3)班將本班50篇學(xué)生調(diào)查報(bào)告得分進(jìn)行整理(成績均為整數(shù)),列出了頻率分布表,并畫出了頻率分布直方圖(部分)如下:

根據(jù)以上信息回答下列問題:
(1)該班90分以上(含90分)的調(diào)查報(bào)告共有篇;
(2)該班被評為優(yōu)秀等級(80分及80分以上)的調(diào)查報(bào)告占%;
(3)補(bǔ)全頻率分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方形ABCD中,AB=6厘米,BC=12厘米,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以1厘米/秒的速度移動(dòng),點(diǎn)Q沿BC從點(diǎn)B開始向點(diǎn)C以2厘米/秒的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)的時(shí)間(0≤t≤6).

(1)當(dāng)PB=2厘米時(shí),求點(diǎn)P移動(dòng)多少秒?
(2)t為何值時(shí),△PBQ為等腰直角三角形?
(3)求四邊形PBQD的面積,并探究一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A=60°,∠B=2∠C,則∠B=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案