【題目】下列說法正確的個數(shù)(

①近似數(shù)精確到十分位:

②在,,,中,最小的數(shù)是

③如圖①所示,在數(shù)軸上點所表示的數(shù)為

④反證法證明命題一個三角形中最多有一個鈍角時,首先應假設這個三角形中有兩個鈍角

⑤如圖②,在內一點到這三條邊的距離相等,則點是三個角平分線的交點

圖① 圖②

A.B.C.D.

【答案】A

【解析】

根據(jù)近似數(shù)、實數(shù)的大小比較、勾股定理、反證法、角平分線的判定定理依次判斷即可.

解:①近似數(shù)32.6×102精確到十位,故本說法錯誤;
②在,,中,最小的數(shù)是,故本說法錯誤;
③如圖所示,在數(shù)軸上點P所表示的數(shù)為-1-,故本說法錯誤;
④反證法證明命題一個三角形中最多有一個鈍角時,首先應假設這個三角形中至少有兩個鈍角,故本說法錯誤;
⑤如圖②,在△ABC內一點P到這三條邊的距離相等,則點P是三個角平分線的交點,故本說法正確;
故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元.若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低3元.已知該服裝成本是每件200元,設顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.

(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為4的等邊三角形,點DAB上異于A,B的一動點,將△ACD繞點C逆時針旋轉60°△BCE,則旋轉過程中△BDE周長的最小值_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AGCF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】心理學家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學生的注意力隨教師講課的變化而變化.開始上課時,學生的注意力逐步增強,中間有一段時間學生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學生的注意力開始分散.經(jīng)過實驗分析可知,學生的注意力指數(shù)y隨時間x(分鐘)的變化規(guī)律如下圖所示(其中ABBC分別為線段,CD為雙曲線的一部分):

1)求出線段AB,曲線CD的解析式,并寫出自變量的取值范圍;

2)開始上課后第五分鐘時與第三十分鐘時相比較,何時學生的注意力更集中?

3)一道數(shù)學競賽題,需要講19分鐘,為了效果較好,要求學生的注意力指數(shù)最低達到36,那么經(jīng)過適當安排,老師能否在學生注意力達到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,CEAD于點E,DFBABA的延長線于點F.

(1)求證:ADF∽△DCE;

(2)當AF=2,AD=6,且點E恰為AD中點時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,ECD延長線上一點,BEAD交于點F,CD=2DE,若△DEF的面積為a,則ABCD的面積為( 。

A. 6a B. 8a C. 9a D. 12a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質進行了探究.

下面是小慧的探究過程,請補充完成:

1)函數(shù)的自變量的取值范圍是______________

2)列表,找出的幾組對應值.

x

1

0

1

2

3

y

b

1

0

1

2

其中, ______________

3)在平面直角坐標系中,描出以上表中各對對應值為坐標的點,并畫出該函數(shù)的圖象;

4)函數(shù)y=|x1|的最小值為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉站,要求它到三條公路的距離相等,則可供選擇的地址有(

A.一處B.二處C.三處D.四處

查看答案和解析>>

同步練習冊答案