【題目】按要求完成下列證明

已知:如圖,ABCD,直線AECD于點C,BAC+CDF=180°.

求證:AEDF.

證明: ABCD____________________________

∴∠BAC=DCE__________________________________________________________________________.

BAC+CDF=180°(已知),

____________ +CDF=180°____________________________________.

AEDF______________________________________________________________________.

【答案】 已知 兩直線平行,同位角相等 DCE 等量代換 同旁內(nèi)角互補,兩直線平行

【解析】ABCD得,∠BAC=DCE,又∠BAC+CDF=180°,則∠DCE+CDF=180°,根據(jù)平行線的判定定理,即可證得.

證明:∵ABCD(已知),

∴∠BAC=DCE( 兩直線平行,同位角相等 ).

∵∠BAC+CDF=180°(已知),

DCE+CDF=180°( 等量代換 ).

AEDF( 同旁內(nèi)角互補,兩直線平行 ).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABC 中,∠C=90°,DBBC 于點 ,分別以點 D 和點 為圓心,以大于 的長為半徑作弧,兩弧相交于點 E 和點 ,作直線 EF,延長 AB 于點 ,連接 DG,下面是說明 ∠A=∠D 的說理過程,請把下面的說理過程補充完整:

因為 DBBC(已知),

所以 DBC=90°( )

因為 C=90°(已知),

所以 DBC=C(等量代換),

所以 DBAC ( ) ,

所以 (兩直線平行,同位角相等);

由作圖法可知:直線 EF 是線段 DB ( ) ,

所以 GD=GB,線段 (上的點到線段兩端點的距離相等),

所以 ( ) ,因為 A=1(已知),

所以 A=D(等量代換).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,連接AF,DE交于點O.

求證:(1)△ABF≌△DCE;

(2)△AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班數(shù)學課外活動小組的同學欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹正前方一樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處測得樹頂端D的仰角為60°,已知A點的高度AB為2米,臺階AC的坡度i=1:2,且B,C,E三點在同一條直線上,請根據(jù)以上條件求出樹DE的高度.(測傾器的高度忽略不計,結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實數(shù)根,下列結(jié)論: ①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正確的個數(shù)有(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:( 1 +tan60°+|3﹣2 |.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點A給出如下定義:若存在點B(不與點A重合,且直線AB不與坐標軸平行或重合),過點A作直線mx軸,過點B作直線ny軸,直線m,n相交于點C.當線段AC,BC的長度相等時,稱點B為點A 的等距點,稱三角形ABC的面積為點A的等距面積. 例如:如圖,點A(2,1),點B(5,4),因為AC= BC=3,所以B為點A 的等距點,此時點A的等距面積為.

(1)點A的坐標是(0,1),在點B1(-1,0),B2(2,3),B3(-1,-1)中,點A 的等距點為________________.

(2)點A的坐標是(-3,1),點A的等距點B在第三象限,

若點B的坐標是,求此時點A的等距面積;

若點A的等距面積不小于,求此時點B的橫坐標t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,△AOB中,AB=BC=2,∠ABC=90°,點O是線段AC的中點,連接OB,將△AOB繞點A逆時針旋轉(zhuǎn)α度得到△ANM,連接CM,點P是線段CM的中點,連接PN、PB.

(1)如圖1,當α=180°時,直接寫出線段PN和PB之間的位置關(guān)系和數(shù)量關(guān)系;

(2)如圖2,當α=90°時,探究線段PN和PB之間的位置關(guān)系和數(shù)量關(guān)系,并給出完整的證明過程;

(3)如圖3,直接寫出當△AOB在繞點A逆時針旋轉(zhuǎn)的過程中,線段PN的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列不等式,并把它們的解集分別表示在數(shù)軸上.

(1) ≥3(x-1)-4;

(2) ≥1.

查看答案和解析>>

同步練習冊答案