【題目】如圖,直線ABCD相交于點O,OD恰為∠BOE的平分線.

(1)圖中∠BOC的補角是 把符合條件的角都填出來);

(2)若∠AOD=145°,求∠AOE的度數(shù).

【答案】(1)∠BOD或∠EOD或∠AOC;(2)110°.

【解析】1)根據(jù)角平分線、對頂角及互補的定義確定∠BOC的補角.

2)根據(jù)互補先求出∠BOD再根據(jù)角平分線的定義得到∠EOD的度數(shù),再根據(jù)角的和差關(guān)系求出∠AOE的度數(shù).

1圖中∠BOC的補角是BODEOD AOC

2)∵∠AOD=145°(已知),

AOD+∠BOD=180°(補角的定義),

∴∠BOD=180°-∠AOD=180°-145°=35°.

CD平分∠BOE

∴∠BOD=∠DOE=35°,

∴∠AOE=∠AOD-∠DOE=145°-35°=110°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC的三邊長分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D是BC的中點,點F是AD的中點,過點D作DE∥AC,交CF的延長線于點E,連接BE,AE.

(1)求證:四邊形ACDE是平行四邊形;

(2)若AB=AC,試判斷四邊形ADBE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,已知AD>AB.

(1)實踐與操作:作∠BAD的平分線交BC于點E,在AD上截取AF=AB,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F,GH分別是邊AB,BC,CD,DA的中點,連接EF,FG,GH,HE.

(1)判斷四邊形EFGH的形狀,并證明你的結(jié)論;

(2)當(dāng)BD,AC滿足什么條件時,四邊形EFGH是正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機抽取了50名同學(xué)進行“舌尖上的滄州——我最喜愛的滄州小吃”調(diào)查活動,將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:

調(diào)查問卷

在下面四種滄州小吃中,你最喜愛的是____(單選)

A泊頭老豆腐   B.羊腸子 C.連鎮(zhèn)燒雞   D.油酥燒餅

請根據(jù)所給信息解答以下問題:

(1)請補全條形統(tǒng)計圖;

(2)若全校有2000名同學(xué),請估計全校同學(xué)中最喜愛“泊頭老豆腐”的同學(xué)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“富春包子”是揚州特色早點,富春茶社為了了解顧客對各種早點的喜愛情況,設(shè)計了如右圖的調(diào)查問卷,對顧客進行了抽樣調(diào)查.根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解決下列問題:

1)條形統(tǒng)計圖中“湯包”的人數(shù)是 ,扇形統(tǒng)計圖中“蟹黃包”部分的圓心角為 °;

2)根據(jù)抽樣調(diào)查結(jié)果,請你估計富春茶社1000名顧客中喜歡“湯包”的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABCACB=90°,AC=BC,分別過A、B作直線的垂線,垂足分別為MN

(1)求證:AMC≌△CNB;

(2)若AM=3,BN=5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時,做投擲骰子(質(zhì)地均勻的正方體)試驗,她們共做了60次試驗,試驗的結(jié)果如下:

朝上的點數(shù)

1

2

3

4

5

6

出現(xiàn)的次數(shù)

7

9

6

8

20

10

(1)計算“3點朝上”的頻率和“5點朝上”的頻率.

(2)小穎說:“根據(jù)上述試驗,一次試驗中出現(xiàn)5點朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次”.小穎和小紅的說法正確嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案