【題目】1)問題發(fā)現(xiàn)

如圖①,△ABC和△AED都是等腰直角三角形,∠BAC=EAD=90°,點B在線段AE上,點C在線段AD上,請直接寫出線段BE與線段CD的數(shù)量關(guān)系: ;

2)操作探究

如圖②,將圖①中的△ABC繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為αα360°),請判斷并證明線段BE與線段CD的數(shù)量關(guān)系;

3)解決問題

將圖①中的△ABC繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為αα360°),若DE=2AC,在旋轉(zhuǎn)的過程中,當(dāng)以A、B、C、D四點為頂點的四邊形是平行四邊形時,請直接寫出旋轉(zhuǎn)角α的度數(shù)

【答案】1;(2,證明見解析;(345°225°315°

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)可得ABAC,AEAD,再根據(jù)等量關(guān)系可得線段BE與線段CD的關(guān)系;

2)根據(jù)等腰直角三角形的性質(zhì)可得ABAC,AEAD,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAE=∠CAD,根據(jù)SAS可證△BAE≌△CAD,根據(jù)全等三角形的性質(zhì)即可求解;

3)根據(jù)平行四邊形的性質(zhì)可得∠ABC=∠ADC45°,再根據(jù)等腰直角三角形的性質(zhì)即可求解.

解:(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD90°,

ABAC,AEAD,

AEABADAC

BECD,

故答案為:BECD

2)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD90°,

ABACAEAD,

由旋轉(zhuǎn)的性質(zhì)得,∠BAE=∠CAD

在△BAE與△CAD,

∴△BAE≌△CADSAS

BECD;

3)如圖,

∵以AB、C、D四點為頂點的四邊形是平行四邊形,△ABC和△AED都是等腰直角三角形,

∴∠ABC=∠ADC45°,

ED2AC,

ACCD,

∴①當(dāng)C點旋轉(zhuǎn)于C1位置時∠CAD45°,

②當(dāng)C點旋轉(zhuǎn)于C2位置時∠CAD360°90°45°225°

③當(dāng)C點旋轉(zhuǎn)于C3位置時∠CAD360°45°315°,

∴角α的度數(shù)是45°225°315°

故答案為:45°225°315

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,以為直徑的圓相交于點,與的延長線相交于點,過點于點

1)求證:是圓的切線;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】越野自行車是中學(xué)生喜愛的交通工具,市場巨大,竟?fàn)幰布ち?/span>.某品牌經(jīng)銷商經(jīng)營的型車去年銷售總額為萬元,今年每輛售價比去年降低元,若賣出的數(shù)量相同,銷售總額將比去年減少

1)設(shè)今年型車每輛銷售價為元,求的值;

2)該品牌經(jīng)銷商計劃新進一批型車和新款型車共輛,且型車的進貨數(shù)量不超過型車數(shù)量的兩倍,請問應(yīng)如何安排兩種型號車的進貨數(shù)量,才能使這批售出后獲利最多?

兩種型號車今年的進貨和銷售價格表

型車

型車

進貨價

/

/

銷售價

/

/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在矩形ABCD中,AB4AD3,⊙C與對角線BD相切.

1)如圖1,求⊙C的半徑;

2)如圖2,點P是⊙C上一個動點,連接AP,AC,AP交⊙C于點Q,若sinPAC,求∠CPA的度數(shù)和弧PQ的長;

3)如圖,對角線AC與⊙C交于點E,點P是⊙C上一個動點,設(shè)點P到直線AC的距離為d,當(dāng)0d時,請直接寫出∠PCE度數(shù)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】頂點為D的拋物線y=﹣x2+bx+cx軸于AB(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(40)

(1)求出拋物線的解析式;

(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點Mx軸的垂線,垂足為N,設(shè)點M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求Sx之間的函數(shù)關(guān)系式,并求S的最大值;

(3)Px軸的正半軸上一個動點,過Px軸的垂線,交直線y=﹣x+mG,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園音樂之聲“結(jié)束后,王老師整理了所有參賽選手的比賽成績(單位:分),繪制成如下頻數(shù)直方圖和扇形統(tǒng)計圖:

1)求本次比賽參賽選手總?cè)藬?shù),并補全頻數(shù)直方圖;

2)求扇形統(tǒng)計圖中扇形E的圓心角度數(shù);

3)成績在E區(qū)域的選手中,男生比女生多一人,從中隨機選取兩人,求恰好選中兩名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,根據(jù)測試成績(成績都不低于50分)繪制出如圖所示的部分頻數(shù)分布直方圖.

請根據(jù)圖中信息完成下列各題.

(1)將頻數(shù)分布直方圖補充完整人數(shù);

(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少;

(3)現(xiàn)將從包括小明和小強在內(nèi)的4名成績優(yōu)異的同學(xué)中隨機選取兩名參加市級比賽,求小明與小強同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,,點G在邊上,連接,作于點E,于點F,連接,設(shè),,

1)求證:;

2)求證:

3)若點G從點B沿邊運動至點C停止,求點E,F所經(jīng)過的路徑與邊圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);

(3當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案