【題目】已知:在梯形中,,,點在對角線(不與點重合),的延長線與射線交于點,設(shè)的長為

1)如圖,當時,求的長;

2)設(shè)的長為,求關(guān)于的函數(shù)解析式,并直接寫出定義域;

3)當是等腰三角形時,求的長.

【答案】(1);(2)();(3)當是等腰三角形時,的長是6

【解析】

1)過,利用求出CH,根據(jù)勾股定理求出AH,再證明四邊形是矩形,得到,再根據(jù),求出,從而求出AD;

2)根據(jù)題意證明,得到,故,在中,利用勾股定理得到故得到,即可得到關(guān)于的函數(shù)解析式;

3)先證明,再分DFDC、FCDCFCFD三種情況,根據(jù)yx的函數(shù)關(guān)系與三角函數(shù)的定義求解即可.

解:(1)過,垂足為,

中,,且,

中,,

中,

,且,

,

四邊形是矩形,

中,,且

,得:

2,

,

,

,

,

中,

,即()

3)由,得:,

是等腰三角形時,也是等腰三角形

∴1°時,不存在;

時,得:,即

解得:(),

時,在中由

得:,解得:(),

綜上所述,當是等腰三角形時,的長是6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)y=ax2+bx+ca≠0)中,函數(shù)值y與自變量x的部分對應值如表:

x

-2

-1

0

1

2

y

0

-2

-2

0

4

1)求該二次函數(shù)的表達式;

2)當y≥4時,求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店將每件進價為80元的某種商店按每件110元出售,每天可售出100件.該商店想通過降低售價、增加銷售量的方法來提高利潤.經(jīng)市場調(diào)查,發(fā)現(xiàn)這種商品每件每降價5元,每天的銷售量可增加50件.設(shè)商品降價x元,每天銷售該商品獲得的利潤為y元.

(1)求y(元)關(guān)于x(元)的函數(shù)關(guān)系式,并寫出x的取值范圍.

(2)求當x取何值時y最大?并求出y的最大值.

(3)若要是每天銷售利潤為3750元,且盡可能最大的向顧客讓利,應將該商品降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC90°AB6BC4,P是△ABC的重心,連結(jié)BPCP,則△BPC的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在梯形中,,,.點上一點,過點交邊于點.將沿直線翻折得到,當過點時,的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P(3,4),連接OP,將線段OP繞點O逆時針旋轉(zhuǎn)90°得線段OP1

(1)在圖中作出線段OP1,并寫出P1點的坐標;

(2)求點P在旋轉(zhuǎn)過程中所繞過的路徑長;

(3)求線段OP在旋轉(zhuǎn)過程中所掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OEFG和正方形ABCD是位似圖形,點F的坐標為(1,1),點C的坐標為(4,2),則這兩個正方形位似中心的坐標是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸為,且過點,有下列結(jié)論:①;②;③;④;其中所有正確的結(jié)論是(填序號):______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AM是⊙O直徑,弦BCAM,垂足為點N,弦CDAM于點E,連按ABBE

1)如圖1,若CDAB,垂足為點F,求證:∠BED2BAM;

2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE2CN;

3)如圖3ABCD,BECD47AE11,求EM的長.

查看答案和解析>>

同步練習冊答案