【題目】為了了解某市120000名初中學(xué)生的視力情況,某校數(shù)學(xué)興趣小組收集有關(guān)數(shù)據(jù),并進行整理分析.
(1)小明在眼鏡店調(diào)查了1000名初中學(xué)生的視力,小剛在鄰居中調(diào)查了20名初中學(xué)生的視力,他們的抽樣是否合理?并說明理由.
(2)該校數(shù)學(xué)興趣小組從該市七、八、九年級各隨機抽取了1000名學(xué)生進行調(diào)查,整理他們的視力情況數(shù)據(jù),得到如下的折線統(tǒng)計圖.
請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市120000名初中學(xué)生視力不良的人數(shù)是多少?
【答案】
(1)解:他們的抽樣都不合理;
因為如果1000名初中學(xué)生全部在眼鏡店抽取,那么該市每個學(xué)生被抽到的機會不相等,樣本不具有代表性;
如果只抽取20名初中學(xué)生,那么樣本的容量過小,樣本不具有廣泛性;
(2)解:根據(jù)題意得:
×120000=72000(名),
該市120000名初中學(xué)生視力不良的人數(shù)是72000名.
【解析】(1)根據(jù)學(xué)生全部在眼鏡店抽取,樣本不具有代表性,只抽取20名初中學(xué)生,那么樣本的容量過小,從而得出答案;(2)用120000乘以初中學(xué)生視力不良的人數(shù)所占的百分比,即可得出答案.
【考點精析】掌握抽樣調(diào)查的可靠性和折線統(tǒng)計圖是解答本題的根本,需要知道①抽樣調(diào)查要具有廣泛性和代表性,即樣本容量要恰當;②抽取的樣本要有隨機性;能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)條件求二次函數(shù)的解析式
(1)二次函數(shù)y=ax2+bx+c的對稱軸為x=3,最小值為﹣2,且過(0,1)點.
(2)拋物線過(﹣1,0),(3,0),(1,﹣5)三點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點,與y軸交于點C,頂點為D,拋物線的對稱軸DF與BC相交于點E,與x軸相交于點F.
(1)求線段DE的長;
(2)設(shè)過E的直線與拋物線相交于點M(x1 , y1),N(x2 , y2),試判斷當|x1﹣x2|的值最小時,直線MN與x軸的位置關(guān)系,并說明理由;
(3)設(shè)P為x軸上的一點,∠DAO+∠DPO=∠α,當tan∠α=4時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】 學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角”三種情況進行探究.
【深入探究】
第一種情況:當∠B是直角時,△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) , 可以知道Rt△ABC≌Rt△DEF. 第二種情況:當∠B是鈍角時,△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF. 第三種情況:當∠B是銳角時,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 , 則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,則△DEB的周長為___cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某零件如圖所示,圖紙要求∠A=90°,∠B=32°,∠C=21°,當檢驗員量得∠BDC=145°,就斷定這個零件不合格,你能說出其中的道理嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com