【題目】閱讀并解決問題:有趣的勾股數(shù)組

定義:一般地,若三角形三邊長,,都是正整數(shù),且滿足,那么數(shù)組稱為勾股數(shù)組.

關于勾股數(shù)組的研究我國歷史上有過非常輝煌的成就,根據(jù)我國古代數(shù)學書《周髀算經(jīng)》記載,在約公元前1100年,人們就已經(jīng)知道勾廣三,股修四,徑隅五(古人把較短的直角邊稱為勾,較長直角邊稱為股,而斜邊則成稱為弦),即知道了勾股數(shù)組,后來人們發(fā)現(xiàn)并證明了勾股定理.

公元263年魏朝劉徽注《九章算術》,文中除提到勾股數(shù)組以外,還提到,,等勾股數(shù)組.

是兩個正整數(shù),且,三角形三邊長,,都是正整數(shù).

下表中的,,可以組成一些有規(guī)律的勾股數(shù)組

2

1

3

4

5

3

2

5

12

13

4

1

15

8

17

4

3

7

24

25

5

2

21

20

29

5

4

9

40

41

6

1

35

12

37

6

5

11

60

61

7

2

45

28

53

7

4

33

56

65

7

6

13

84

85

請你仔細觀察這個表格,解答下列問題:

1)表中的等量關系式是________;

2)表中的勾股數(shù)組用只含,的代數(shù)式表示為________

3)小明通過研究表中數(shù)據(jù)發(fā)現(xiàn):若勾股數(shù)組中,弦與股的差為1,則勾股數(shù)的形式可表述為,為正整數(shù)),請你用含的代數(shù)式表示

【答案】1;(2;(3

【解析】

1)根據(jù)表中的數(shù)據(jù)可發(fā)現(xiàn)a正好為mn的平方差;

2)仿照(1),再找出b、cm、n的關系即可得到答案;

3)利用勾股定理列式整理即可得出答案.

解:(1,

,

,

……,

;

2)據(jù)表中的數(shù)據(jù)規(guī)律可知:

,,,

所以表中的勾股數(shù)組用只含的代數(shù)式表示為;

3)根據(jù)題意,得,

解得

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A-4,)、B2,-4)是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線AB軸的交點C的坐標;

3)求方程的解(請直接寫出答案);

4)求不等式的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)

1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應分別購進多少件?

2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于點DPAB延長線上一點,∠PCD=2∠BAC

1求證:CP為⊙O的切線;

2BP=1,CP=,求 ⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張師傅駕車從甲地到乙地,兩地相距500千米,汽車出發(fā)前油箱有油25升,途中加油若干升,加油前、后汽車都以100千米/小時的速度勻速行駛,已知油箱中剩余油量(升)與行駛時間(小時)之間的關系如圖所示.以下說法正確的是(

A.加油前油箱中剩余油量(升)與行駛時間(小時)的函數(shù)關系是

B.途中加油30

C.汽車加油后還可行駛375小時

D.汽車到達乙地時油箱中還余油9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△DEF中,∠ACB=EFD=90°,點BF、CD在同一直線上,已知ABDE,且AB=DE,AC=6,EF=8,DB=10,則CF的長度為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中裝有4個大小、質(zhì)地都相同的乒乓球,球面上分別標有數(shù)字1、2、3、4.

(1)攪勻后從中任意摸出1個球,求摸出的乒乓球球面上數(shù)字為1的概率;

(2)攪勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,求2次摸出的乒乓球球面上數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一平面中,兩條直線相交有一個交點;三條直線兩兩相交最多有3個交點;四條直線兩兩相交最多有6個交點……當相交直線的條數(shù)從2n變化時,最多可有的交點數(shù)m與直線條數(shù)n之間的關系如下表:

mn的關系式為:___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設正按投資計劃有序推進.花城新區(qū)建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如下表所示:

租金(單位:元/時)

挖掘土石方量(單位:m3/時)

甲型挖掘機

100

60

乙型挖掘機

120

80

1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?

2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

同步練習冊答案