【題目】某氣象研究中心觀測到一場沙塵暴從發(fā)生到減弱的過程,開始一段時(shí)間風(fēng)速平均每小時(shí)增加2千米,4小時(shí)后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米,然后風(fēng)速不變,當(dāng)沙塵暴遇到綠色植被區(qū)時(shí),風(fēng)速y(千米/小時(shí)),時(shí)間x(小時(shí))成反比例關(guān)系地慢慢減弱,結(jié)合風(fēng)速與時(shí)間的圖象,回答下列問題:

1)這場沙塵暴的最高風(fēng)速是多少?最高風(fēng)速維持了多長時(shí)間;

2)求出當(dāng)x20時(shí),風(fēng)速y(千米/小時(shí))與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系?

3)在這次沙塵暴的形成過程中,當(dāng)風(fēng)速不超過10千米/小時(shí)稱為“安全時(shí)刻”,其余時(shí)刻是“危險(xiǎn)時(shí)刻”.問這次風(fēng)暴的整個(gè)過程中,“危險(xiǎn)時(shí)刻”一共有多長時(shí)間?

【答案】132、10;(2;(359.5小時(shí)

【解析】

1)由速度=增加幅度×?xí)r間可得4時(shí)風(fēng)速為8千米/時(shí),10時(shí)達(dá)到最高風(fēng)速,為32千米/時(shí),與x軸平行的一段風(fēng)速不變,最高風(fēng)速維持時(shí)間為201010小時(shí);

2)設(shè)y,將(20,32)代入,利用待定系數(shù)法即可求解;

3)由于4時(shí)風(fēng)速為8千米/時(shí),而4小時(shí)后,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米,所以4.5時(shí)風(fēng)速為10千米/時(shí),再將y10代入(2)中所求函數(shù)解析式,求出x的值,再減去4.5,即可求解.

解:(104時(shí),風(fēng)速平均每小時(shí)增加2千米,所以4時(shí)風(fēng)速為8千米/時(shí);

410時(shí),風(fēng)速變?yōu)槠骄啃r(shí)增加4千米,10時(shí)達(dá)到最高風(fēng)速,為8+6×432千米/時(shí),

1020時(shí),風(fēng)速不變,最高風(fēng)速維持時(shí)間為201010小時(shí);

答:這場沙塵暴的最高風(fēng)速是32千米/時(shí),最高風(fēng)速維持了10小時(shí);

2)設(shè)y

將(20,32)代入,得32,

解得k640

所以當(dāng)x20時(shí),風(fēng)速y(千米/小時(shí))與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系為y;

3)∵4時(shí)風(fēng)速為8千米/時(shí),而4小時(shí)后,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米,

4.5時(shí)風(fēng)速為10千米/時(shí),

y10代入y

10,

解得x64,

644.559.5(小時(shí)).

故沙塵暴的風(fēng)速從開始形成過程中的10千米/小時(shí)到最后減弱過程中的10千米/小時(shí),共經(jīng)過59.5小時(shí).

答:這次風(fēng)暴的整個(gè)過程中,危險(xiǎn)時(shí)刻一共經(jīng)過59.5小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn)連接PA、PB、PC

1PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到P'CBAB=m,PB=nnm.求PAB旋轉(zhuǎn)過程中邊PA掃過區(qū)域陰影部分的面積;

2PA=,PB=,APB=135°,PC的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋中裝有3個(gè)帶號(hào)碼的球,球號(hào)分別為2,3,4,這些球除號(hào)碼不同外其它均相同。甲、乙、兩同學(xué)玩摸球游戲,游戲規(guī)則如下:

先由甲同學(xué)從中隨機(jī)摸出一球,記下球號(hào),并放回?cái)噭,再由乙同學(xué)從中隨機(jī)摸出一球,記下球號(hào)。將甲同學(xué)摸出的球號(hào)作為一個(gè)兩位數(shù)的十位上的數(shù),乙同學(xué)的作為個(gè)位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.

問:這個(gè)游戲公平嗎?請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一批日用品,若按每件5元的價(jià)格銷售,每月能賣出3萬件;若按每件6元的價(jià)格銷售,每月能賣出2萬件,假定每月銷售件數(shù)(件)與價(jià)格(元/件)之間滿足一次函數(shù)關(guān)系.

(1)試求:yx之間的函數(shù)關(guān)系式;

(2)這批日用品購進(jìn)時(shí)進(jìn)價(jià)為4元,則當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的潤最大?每月的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于AB)的長方形花圃.

1)設(shè)花圃的一邊ABxm,則BC的長可用含x的代數(shù)式表示為______m;

2)當(dāng)AB的長是多少米時(shí),圍成的花圃面積為63平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(-1,5),B(10),C(43)

1)在圖中畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1;(其中A1、B1C1分別是A、BC的對(duì)應(yīng)點(diǎn),不寫畫法.)

2)寫出點(diǎn)A1、B1、C1的坐標(biāo);

3)求出△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.

(1)當(dāng)a=﹣時(shí),①求h的值;②通過計(jì)算判斷此球能否過網(wǎng).

(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為m的Q處時(shí),乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,過點(diǎn)O作兩條射線OM、ON,且AOMCON90°

(1)OC平分AOM,求AOD的度數(shù).

(2)∠1BOC,求AOCMOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(4分)如圖,直線l外不重合的兩點(diǎn)A、B,在直線l上求作一點(diǎn)C,使得AC+BC的長度最短,作法為:作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′;連接AB′與直線l相交于點(diǎn)C,則點(diǎn)C為所求作的點(diǎn)在解決這個(gè)問題時(shí)沒有運(yùn)用到的知識(shí)或方法是(

A轉(zhuǎn)化思想

B三角形的兩邊之和大于第三邊

C兩點(diǎn)之間,線段最短

D三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角

查看答案和解析>>

同步練習(xí)冊(cè)答案