【題目】化簡與求值
(1)求3x2+x+3(x2﹣x)﹣(6x2+x)的值,其中x=﹣6.
(2)先化簡,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中|a+1|+(b﹣)2=0
科目:初中數學 來源: 題型:
【題目】如圖,以AB為直徑的⊙O外接于△ABC,過A點的切線AP與BC的延長線交于點P,∠APB的平分線分別交AB,AC于點D,E,其中AE,BD(AE<BD)的長是一元二次方程x2﹣5x+6=0的兩個實數根.
(1)求證:PABD=PBAE;
(2)在線段BC上是否存在一點M,使得四邊形ADME是菱形?若存在,請給予證明,并求其面積;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學習有理數得乘法后,老師給同學們這樣一道題目:
計算:49×(﹣5),看誰算的又快又對,有兩位同學的解法如下:
聰聰:原式=﹣×5=﹣=﹣249;
明明:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對于以上兩種解法,你認為誰的解法較好?
(2)上面的解法對你有何啟發(fā),你認為還有更好的方法嗎?如果有,請把它寫出來;
(3)用你認為最合適的方法計算:29×(﹣8)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把所有正偶數從小到大排列,并按如下規(guī)律分組:(2)、(4,6),(8,10,12),(14,16,18,20),…,現有等式Am=(i,j)表示正偶數m是第i組第j個數(從左往右數).如A2=(1,1),A10=(3,2),A18=(4,3),則A200可表示為( 。
A.(14,9)B.(14,10)C.(15,9)D.(15,10)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P,Q是方格紙中的兩格點,請按要求畫出以PQ為對角線的格點四邊形.
(1)在圖1中畫出一個面積最小的¨PAQB;
(2)在圖2中畫出一個四邊形PCQD,使其是軸對稱圖形而不是中心對稱圖形,且另一條對角線CD由線段PQ以某一格點為旋轉中心旋轉得到.注:圖1,圖2在答題紙上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD,垂足為E,連結CO,AD,∠BAD=20°,則下列說法中正確的是( )
A. ∠BOC=2∠BAD B. CE=EO C. ∠OCE=40° D. AD=2OB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.如果一個圖形是中心對稱圖形,那么它一定不是軸對稱圖形
B.正方形是軸對稱圖形,它共有兩條對稱軸
C.等邊三角形是旋轉對稱圖形,它的最小旋轉角等于度
D.平行四邊形是中心對稱圖形,其對稱中心是它的一條對角線的中點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代換)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com