【題目】某花卉種植基地準(zhǔn)備圍建一個(gè)面積為100平方米的矩形苗圃園種植玫瑰花,其中一邊靠墻,另外三邊用29米長(zhǎng)的籬笆圍成.已知墻長(zhǎng)為18米,為方便進(jìn)入,在墻的對(duì)面留出1米寬的門(mén)(如圖所示),求這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為多少米?
【答案】10米
【解析】
設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米,則平行于墻的一邊為(29+1-2x)米,根據(jù)此矩形苗圃園面積為100平方米列一元二次方程求解可得答案.
解:設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米,則平行于墻的一邊為(29+1-2x)米,
由題意得: x(30-2x)=100,
-2x+30x-100=0,x-15x+50=0
(x-5)(x-10)=0,
或,
當(dāng)x=5時(shí),則平行于墻的一邊為20米>18米,不符合題意,
取x=10,
答:垂直于墻的一邊長(zhǎng)為10米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平整的地面上,由若干個(gè)完全相同的棱長(zhǎng)為 10 cm 的小正方體堆成一個(gè)幾何體,如圖 所示.
(1)這個(gè)幾何體由多少個(gè)小正方體組成?請(qǐng)畫(huà)出這個(gè)幾何體的三視圖.
(2)如果在這個(gè)幾何體的表面(不包括底面)噴上黃色的漆,則在所有的小正方體中,有多少個(gè)只有一個(gè)面是黃色?有多少個(gè)只有兩個(gè)面是黃色?有多少個(gè)只有三個(gè)面是黃色?
(3)假設(shè)現(xiàn)在你手里還有一些相同的小正方體,保持這個(gè)幾何體的主視圖、俯視圖形狀 不變,最多可以再添加幾個(gè)小正方體?這時(shí)如果要重新給這個(gè)幾何體表面(不包括底面) 噴上紅色的漆,需要噴漆的面積比原幾何體增加了還是減少了?增加或減少的面積是 多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形ABC的直角頂點(diǎn)在x軸上,頂點(diǎn)B在y軸上,頂點(diǎn)C在函數(shù)(x>0)的圖象上,且BC∥x軸.將△ABC沿y軸正方向平移,使點(diǎn)A的對(duì)應(yīng)點(diǎn)落在此函數(shù)的圖象上,則平移的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,ABCD中,∠ABC=90°,AB=4cm,BC=8cm,AC的垂直平分線(xiàn)EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形.
(2)如圖1,求AF的長(zhǎng).
(3)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止,在運(yùn)動(dòng)過(guò)程中,點(diǎn)P的速度為每秒1cm,點(diǎn)Q的速度為每秒0.8cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒,若當(dāng)以A、P、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,于點(diǎn),于點(diǎn),是的中點(diǎn),連結(jié),設(shè),則()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,CD⊥AB,∠DEB=∠ACB,∠1+∠2=180°,試判斷FG與AB的位置關(guān)系,并說(shuō)明理由.請(qǐng)?jiān)谙聞澗(xiàn)內(nèi)補(bǔ)全解題過(guò)程或依據(jù).
解:FG⊥AB,理由如下:
∵∠DEB=∠ACB (已知)
∴AC∥________ (__________________)
∴∠1=∠3(_______________________)
∵∠1+∠2=180°(已知)
∴∠3+∠2=_________(等量代換)
∴FG∥________ (_________________)
∴∠FGA=∠________(_____________)
∵CD⊥AB(已知)
∴∠CDA=90°
∴∠________=90°(等量代換)
∴FG⊥AB(_____________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閔行區(qū)政府為殘疾人辦實(shí)事,在道路改造工程中為盲人修建一條長(zhǎng)3000米的盲道,根據(jù)規(guī)劃設(shè)計(jì)和要求,某工程隊(duì)在實(shí)際施工中增加了施工人員,每天修建的盲道比原計(jì)劃多250米,結(jié)果提前2天完成工程,問(wèn)實(shí)際每天修建盲道多少米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,且AC⊥BD,AC=BD,SABCD=8cm2,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則四邊形EFGH的周長(zhǎng)等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,左右兩幅圖案關(guān)于y軸對(duì)稱(chēng),右圖案中的左右眼睛的坐標(biāo)分別是(2,3),(4,3),嘴角左右端點(diǎn)的坐標(biāo)分別是(2,1),(4,1).
(1)試確定左圖案中的左右眼睛和嘴角左右端點(diǎn)的坐標(biāo);
(2)從對(duì)稱(chēng)的角度來(lái)考慮,說(shuō)一說(shuō)你是怎樣得到的;
(3)直接寫(xiě)出右圖案中的嘴角左右端點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com