【題目】如圖,在梯形中,,,P為線段上的一動點,且和B、C不重合,連接,過點P交射線于點E

聰聰根據學習函數(shù)的經驗,對這個問題進行了研究:

1)通過推理,他發(fā)現(xiàn),請你幫他完成證明.

2)利用幾何畫板,他改變的長度,運動點P,得到不同位置時,、的長度的對應值:

時,得表1

1

2

3

4

5

0.83

1.33

1.50

1.33

0.83

時,得表2

1

2

3

4

5

6

7

1.17

2.00

2.50

2.67

2.50

2.00

1.17

這說明,點P在線段上運動時,要保證點E總在線段上,的長度應有一定的限制.

①填空:根據函數(shù)的定義,我們可以確定,在的長度這兩個變量中,_____的長度為自變量,_____的長度為因變量;

②設,當點P在線段上運動時,點E總在線段上,求m的取值范圍.

【答案】1)證明見解析;(2)①BP,CE;②0m≤

【解析】

1)由同角的余角相等可得∠APB=∠CEP,又因為∠B=∠C90°,即可證得相似;

2)①由題意可得隨著P點的變化,CE的長度在變化,即可判斷自變量和因變量;

②設BP的長度為xcm,CE的長度為ycm,由△ABP∽△PCE,利用對應邊成比例求出yx的函數(shù)關系式,利用二次函數(shù)性質,求出其最大值,列不等式確定m的取值范圍;

解:(1)證明:∵,

∴∠APE90°,

∵∠APB+∠CPE90°,∠CEP+∠CPE90°,

∴∠APB=∠CEP

又∵∠B=∠C90°,

∴△ABP∽△PCE;

2)①由題意可得隨著P點的變化,CE的長度在變化,所以BP的長度為自變量,CE的長度為因變量;

故答案為:BP,CE;

②設BP的長度為xcm,CE的長度為ycm,

∵△ABP∽△PCE

,即,

y

∴當x時,y取得最大值,最大值為,

∵點P在線段BC上運動時,點E總在線段CD上,

≤2,

解得m≤,

m的取值范圍為:0m≤

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的迅猛發(fā)展,人們去商場購物的支付方式更加多樣、便捷.某校數(shù)學興趣小組設計了一份你最喜歡的支付方式調查問卷(每人必選且只選一種),在某商場隨機調查了部分顧客,并將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

1)這次活動共調查了  人,在扇形統(tǒng)計圖中,表示現(xiàn)金支付的扇形圓心角的度數(shù)為    ;

2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的眾數(shù)    ;

3)運用這次的調查結果估計1000名顧客中用支付寶支付的有多少人?

4)在一次購物中,嘉嘉和琪琪都想從微信、支付寶銀行卡三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某中學學生課余活動情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調查統(tǒng)計,現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調查的方式收集數(shù)據(參與問卷調查的每名學生只能選擇其中--項),并據調查得到的數(shù)據繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:

(1) ,直接補全條形統(tǒng)計圖;

(2)若該校共有學生名,試估計該校喜愛看課外書的學生人數(shù);

(3)若被調查喜愛體育活動的名學生中有名男生和名女生,現(xiàn)從這名學生中任意抽取名,請用列表或畫樹狀圖的方法求恰好抽到名男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】火鍋是重慶的一張名片,深受廣大市民的喜愛.重慶某火鍋店采取堂食、外賣、店外擺攤(簡稱擺攤)三種方式經營,6月份該火鍋店堂食、外賣、擺攤三種方式的營業(yè)額之比為352.隨著促進消費政策的出臺,該火鍋店老板預計7月份總營業(yè)額會增加,其中擺攤增加的營業(yè)額占總增加的營業(yè)額的,則擺攤的營業(yè)額將達到7月份總營業(yè)額的,為使堂食、外賣7月份的營業(yè)額之比為85,則7月份外賣還需增加的營業(yè)額與7月份總營業(yè)額之比是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,點A上,四邊形是矩形,連接交于點E,連接于點F.下列4個判斷:①平分;②;③;④若點G是線段的中點,則為等腰直角三角形.正確判斷的個數(shù)是( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,過點DDEAB于點E,點F在邊CD上,CF=AE,連接AF,BF.

(1)求證:四邊形BFDE是矩形;

(2)已知∠DAB=60°,AF是∠DAB的平分線,若AD=3,求DC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩塊等腰直角三角形紙片AOBCOD按圖1所示放置,直角頂點重合在點O處,AB13,CD7.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉a0α90°),如圖2所示.當BDCD在同一直線上(如圖3)時,則ABC的面積為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+(4a1)x4x軸交于點A、B,與y軸交于點C,且OC=2OB,點D為線段OB上一動點(不與點B重合),過點D作矩形DEFH,點H、F在拋物線上,點Ex軸上.

1)求拋物線的解析式;

2)當矩形DEFH的周長最大時,求矩形DEFH的面積;

3)在(2)的條件下,矩形DEFH不動,將拋物線沿著x軸向左平移m個單位,拋物線與矩形DEFH的邊交于點M、N,連接M、N.若MN恰好平分矩形DEFH的面積,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線yax22x+cx軸交于點A1,0),點B(﹣3,0),與y軸交于點C,連接BC,點P在第二象限的拋物線上,連接PC、PO,線段PO交線段BC于點 E

1)求拋物線的表達式;

2)若△PCE的面積為S1,△OCE的面積為S2,當時,求點P的坐標;

3)已知點C關于拋物線對稱軸的對稱點為點N,連接BN,點Hx軸上,當∠HCB=∠NBC時,

①求滿足條件的所有點H的坐標;

②當點H在線段AB上時,點Q是線段BH外一點,QH1,連接BQ,將線段BQ繞著點Q順時針旋轉90°,得到線段QM,連接MH,直接寫出線段MH的取值范圍.

查看答案和解析>>

同步練習冊答案